forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
montage.py
1822 lines (1558 loc) · 57.3 KB
/
montage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os.path as op
import re
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass
import numpy as np
from .._fiff._digitization import (
_coord_frame_const,
_count_points_by_type,
_ensure_fiducials_head,
_format_dig_points,
_get_data_as_dict_from_dig,
_get_dig_eeg,
_get_fid_coords,
_make_dig_points,
_read_dig_fif,
write_dig,
)
from .._fiff.constants import CHANNEL_LOC_ALIASES, FIFF
from .._fiff.meas_info import create_info
from .._fiff.open import fiff_open
from .._fiff.pick import _picks_to_idx, channel_type, pick_types
from .._freesurfer import get_mni_fiducials
from ..defaults import HEAD_SIZE_DEFAULT
from ..transforms import (
Transform,
_ensure_trans,
_fit_matched_points,
_frame_to_str,
_quat_to_affine,
_sph_to_cart,
_topo_to_sph,
_verbose_frames,
apply_trans,
get_ras_to_neuromag_trans,
)
from ..utils import (
_check_fname,
_check_option,
_on_missing,
_pl,
_validate_type,
copy_function_doc_to_method_doc,
fill_doc,
verbose,
warn,
)
from ..utils.docs import docdict
from ..viz import plot_montage
from ._dig_montage_utils import _parse_brainvision_dig_montage, _read_dig_montage_egi
@dataclass
class _BuiltinStandardMontage:
name: str
description: str
_BUILTIN_STANDARD_MONTAGES = [
_BuiltinStandardMontage(
name="standard_1005",
description="Electrodes are named and positioned according to the "
"international 10-05 system (343+3 locations)",
),
_BuiltinStandardMontage(
name="standard_1020",
description="Electrodes are named and positioned according to the "
"international 10-20 system (94+3 locations)",
),
_BuiltinStandardMontage(
name="standard_alphabetic",
description="Electrodes are named with LETTER-NUMBER combinations "
"(A1, B2, F4, …) (65+3 locations)",
),
_BuiltinStandardMontage(
name="standard_postfixed",
description="Electrodes are named according to the international "
"10-20 system using postfixes for intermediate positions "
"(100+3 locations)",
),
_BuiltinStandardMontage(
name="standard_prefixed",
description="Electrodes are named according to the international "
"10-20 system using prefixes for intermediate positions "
"(74+3 locations)",
),
_BuiltinStandardMontage(
name="standard_primed",
description="Electrodes are named according to the international "
"10-20 system using prime marks (' and '') for "
"intermediate positions (100+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi16",
description="BioSemi cap with 16 electrodes (16+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi32",
description="BioSemi cap with 32 electrodes (32+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi64",
description="BioSemi cap with 64 electrodes (64+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi128",
description="BioSemi cap with 128 electrodes (128+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi160",
description="BioSemi cap with 160 electrodes (160+3 locations)",
),
_BuiltinStandardMontage(
name="biosemi256",
description="BioSemi cap with 256 electrodes (256+3 locations)",
),
_BuiltinStandardMontage(
name="easycap-M1",
description="EasyCap with 10-05 electrode names (74 locations)",
),
_BuiltinStandardMontage(
name="easycap-M10",
description="EasyCap with numbered electrodes (61 locations)",
),
_BuiltinStandardMontage(
name="easycap-M43",
description="EasyCap with numbered electrodes (64 locations)",
),
_BuiltinStandardMontage(
name="EGI_256",
description="Geodesic Sensor Net (256 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-32",
description="HydroCel Geodesic Sensor Net and Cz (33+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-64_1.0",
description="HydroCel Geodesic Sensor Net (64+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-65_1.0",
description="HydroCel Geodesic Sensor Net and Cz (65+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-128",
description="HydroCel Geodesic Sensor Net (128+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-129",
description="HydroCel Geodesic Sensor Net and Cz (129+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-256",
description="HydroCel Geodesic Sensor Net (256+3 locations)",
),
_BuiltinStandardMontage(
name="GSN-HydroCel-257",
description="HydroCel Geodesic Sensor Net and Cz (257+3 locations)",
),
_BuiltinStandardMontage(
name="mgh60",
description="The (older) 60-channel cap used at MGH (60+3 locations)",
),
_BuiltinStandardMontage(
name="mgh70",
description="The (newer) 70-channel BrainVision cap used at MGH "
"(70+3 locations)",
),
_BuiltinStandardMontage(
name="artinis-octamon",
description="Artinis OctaMon fNIRS (8 sources, 2 detectors)",
),
_BuiltinStandardMontage(
name="artinis-brite23",
description="Artinis Brite23 fNIRS (11 sources, 7 detectors)",
),
_BuiltinStandardMontage(
name="brainproducts-RNP-BA-128",
description="Brain Products with 10-10 electrode names (128 channels)",
),
]
def _check_get_coord_frame(dig):
dig_coord_frames = sorted(set(d["coord_frame"] for d in dig))
if len(dig_coord_frames) != 1:
raise RuntimeError(
"Only a single coordinate frame in dig is supported, got "
f"{dig_coord_frames}"
)
return _frame_to_str[dig_coord_frames.pop()] if dig_coord_frames else None
def get_builtin_montages(*, descriptions=False):
"""Get a list of all standard montages shipping with MNE-Python.
The names of the montages can be passed to :func:`make_standard_montage`.
Parameters
----------
descriptions : bool
Whether to return not only the montage names, but also their
corresponding descriptions. If ``True``, a list of tuples is returned,
where the first tuple element is the montage name and the second is
the montage description. If ``False`` (default), only the names are
returned.
.. versionadded:: 1.1
Returns
-------
montages : list of str | list of tuple
If ``descriptions=False``, the names of all builtin montages that can
be used by :func:`make_standard_montage`.
If ``descriptions=True``, a list of tuples ``(name, description)``.
"""
if descriptions:
return [(m.name, m.description) for m in _BUILTIN_STANDARD_MONTAGES]
else:
return [m.name for m in _BUILTIN_STANDARD_MONTAGES]
def make_dig_montage(
ch_pos=None,
nasion=None,
lpa=None,
rpa=None,
hsp=None,
hpi=None,
coord_frame="unknown",
):
r"""Make montage from arrays.
Parameters
----------
ch_pos : dict | None
Dictionary of channel positions. Keys are channel names and values
are 3D coordinates - array of shape (3,) - in native digitizer space
in m.
nasion : None | array, shape (3,)
The position of the nasion fiducial point.
This point is assumed to be in the native digitizer space in m.
lpa : None | array, shape (3,)
The position of the left periauricular fiducial point.
This point is assumed to be in the native digitizer space in m.
rpa : None | array, shape (3,)
The position of the right periauricular fiducial point.
This point is assumed to be in the native digitizer space in m.
hsp : None | array, shape (n_points, 3)
This corresponds to an array of positions of the headshape points in
3d. These points are assumed to be in the native digitizer space in m.
hpi : None | array, shape (n_hpi, 3)
This corresponds to an array of HPI points in the native digitizer
space. They only necessary if computation of a ``compute_dev_head_t``
is True.
coord_frame : str
The coordinate frame of the points. Usually this is ``'unknown'``
for native digitizer space.
Other valid values are: ``'head'``, ``'meg'``, ``'mri'``,
``'mri_voxel'``, ``'mni_tal'``, ``'ras'``, ``'fs_tal'``,
``'ctf_head'``, and ``'ctf_meg'``.
.. note::
For custom montages without fiducials, this parameter must be set
to ``'head'``.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_egi
read_dig_fif
read_dig_localite
read_dig_polhemus_isotrak
"""
_validate_type(ch_pos, (dict, None), "ch_pos")
if ch_pos is None:
ch_names = None
else:
ch_names = list(ch_pos)
dig = _make_dig_points(
nasion=nasion,
lpa=lpa,
rpa=rpa,
hpi=hpi,
extra_points=hsp,
dig_ch_pos=ch_pos,
coord_frame=coord_frame,
)
return DigMontage(dig=dig, ch_names=ch_names)
class DigMontage:
"""Montage for digitized electrode and headshape position data.
.. warning:: Montages are typically created using one of the helper
functions in the ``See Also`` section below instead of
instantiating this class directly.
Parameters
----------
dig : list of dict
The object containing all the dig points.
ch_names : list of str
The names of the EEG channels.
See Also
--------
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, *, dig=None, ch_names=None):
dig = list() if dig is None else dig
_validate_type(item=dig, types=list, item_name="dig")
ch_names = list() if ch_names is None else ch_names
n_eeg = sum([1 for d in dig if d["kind"] == FIFF.FIFFV_POINT_EEG])
if n_eeg != len(ch_names):
raise ValueError(
"The number of EEG channels (%d) does not match the number"
" of channel names provided (%d)" % (n_eeg, len(ch_names))
)
self.dig = dig
self.ch_names = ch_names
def __repr__(self):
"""Return string representation."""
n_points = _count_points_by_type(self.dig)
return (
"<DigMontage | {extra:d} extras (headshape), {hpi:d} HPIs,"
" {fid:d} fiducials, {eeg:d} channels>"
).format(**n_points)
@copy_function_doc_to_method_doc(plot_montage)
def plot(
self,
*,
scale=None,
scale_factor=None,
show_names=True,
kind="topomap",
show=True,
sphere=None,
axes=None,
verbose=None,
):
return plot_montage(
self,
scale=scale,
scale_factor=scale_factor,
show_names=show_names,
kind=kind,
show=show,
sphere=sphere,
axes=axes,
)
@fill_doc
def rename_channels(self, mapping, allow_duplicates=False):
"""Rename the channels.
Parameters
----------
%(mapping_rename_channels_duplicates)s
Returns
-------
inst : instance of DigMontage
The instance. Operates in-place.
"""
from .channels import rename_channels
temp_info = create_info(list(self._get_ch_pos()), 1000.0, "eeg")
rename_channels(temp_info, mapping, allow_duplicates)
self.ch_names = temp_info["ch_names"]
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save digitization points to FIF.
Parameters
----------
fname : path-like
The filename to use. Should end in .fif or .fif.gz.
%(overwrite)s
%(verbose)s
"""
coord_frame = _check_get_coord_frame(self.dig)
write_dig(fname, self.dig, coord_frame, overwrite=overwrite)
def __iadd__(self, other):
"""Add two DigMontages in place.
Notes
-----
Two DigMontages can only be added if there are no duplicated ch_names
and if fiducials are present they should share the same coordinate
system and location values.
"""
def is_fid_defined(fid):
return not (fid.nasion is None and fid.lpa is None and fid.rpa is None)
# Check for none duplicated ch_names
ch_names_intersection = set(self.ch_names).intersection(other.ch_names)
if ch_names_intersection:
raise RuntimeError(
(
"Cannot add two DigMontage objects if they contain duplicated"
" channel names. Duplicated channel(s) found: {}."
).format(", ".join([f"{v!r}" for v in sorted(ch_names_intersection)]))
)
# Check for unique matching fiducials
self_fid, self_coord = _get_fid_coords(self.dig)
other_fid, other_coord = _get_fid_coords(other.dig)
if is_fid_defined(self_fid) and is_fid_defined(other_fid):
if self_coord != other_coord:
raise RuntimeError(
"Cannot add two DigMontage objects if "
"fiducial locations are not in the same "
"coordinate system."
)
for kk in self_fid:
if not np.array_equal(self_fid[kk], other_fid[kk]):
raise RuntimeError(
"Cannot add two DigMontage objects if "
"fiducial locations do not match "
f"({kk})"
)
# keep self
self.dig = _format_dig_points(
self.dig
+ [d for d in other.dig if d["kind"] != FIFF.FIFFV_POINT_CARDINAL]
)
else:
self.dig = _format_dig_points(self.dig + other.dig)
self.ch_names += other.ch_names
return self
def copy(self):
"""Copy the DigMontage object.
Returns
-------
dig : instance of DigMontage
The copied DigMontage instance.
"""
return deepcopy(self)
def __add__(self, other):
"""Add two DigMontages."""
out = self.copy()
out += other
return out
def __eq__(self, other):
"""Compare different DigMontage objects for equality.
Returns
-------
Boolean output from comparison of .dig
"""
return self.dig == other.dig and self.ch_names == other.ch_names
def _get_ch_pos(self):
pos = [d["r"] for d in _get_dig_eeg(self.dig)]
assert len(self.ch_names) == len(pos)
return OrderedDict(zip(self.ch_names, pos))
def _get_dig_names(self):
NAMED_KIND = (FIFF.FIFFV_POINT_EEG,)
is_eeg = np.array([d["kind"] in NAMED_KIND for d in self.dig])
assert len(self.ch_names) == is_eeg.sum()
dig_names = [None] * len(self.dig)
for ch_name_idx, dig_idx in enumerate(np.where(is_eeg)[0]):
dig_names[dig_idx] = self.ch_names[ch_name_idx]
return dig_names
def get_positions(self):
"""Get all channel and fiducial positions.
Returns
-------
positions : dict
A dictionary of the positions for channels (``ch_pos``),
coordinate frame (``coord_frame``), nasion (``nasion``),
left preauricular point (``lpa``),
right preauricular point (``rpa``),
Head Shape Polhemus (``hsp``), and
Head Position Indicator(``hpi``).
E.g.::
{
'ch_pos': {'EEG061': [0, 0, 0]},
'nasion': [0, 0, 1],
'coord_frame': 'mni_tal',
'lpa': [0, 1, 0],
'rpa': [1, 0, 0],
'hsp': None,
'hpi': None
}
"""
# get channel positions as dict
ch_pos = self._get_ch_pos()
# get coordframe and fiducial coordinates
montage_bunch = _get_data_as_dict_from_dig(self.dig)
coord_frame = _frame_to_str.get(montage_bunch.coord_frame)
# return dictionary
positions = dict(
ch_pos=ch_pos,
coord_frame=coord_frame,
nasion=montage_bunch.nasion,
lpa=montage_bunch.lpa,
rpa=montage_bunch.rpa,
hsp=montage_bunch.hsp,
hpi=montage_bunch.hpi,
)
return positions
@verbose
def apply_trans(self, trans, verbose=None):
"""Apply a transformation matrix to the montage.
Parameters
----------
trans : instance of mne.transforms.Transform
The transformation matrix to be applied.
%(verbose)s
"""
_validate_type(trans, Transform, "trans")
coord_frame = self.get_positions()["coord_frame"]
trans = _ensure_trans(trans, fro=coord_frame, to=trans["to"])
for d in self.dig:
d["r"] = apply_trans(trans, d["r"])
d["coord_frame"] = trans["to"]
@verbose
def add_estimated_fiducials(self, subject, subjects_dir=None, verbose=None):
"""Estimate fiducials based on FreeSurfer ``fsaverage`` subject.
This takes a montage with the ``mri`` coordinate frame,
corresponding to the FreeSurfer RAS (xyz in the volume) T1w
image of the specific subject. It will call
:func:`mne.coreg.get_mni_fiducials` to estimate LPA, RPA and
Nasion fiducial points.
Parameters
----------
%(subject)s
%(subjects_dir)s
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
See Also
--------
:ref:`tut-source-alignment`
Notes
-----
Since MNE uses the FIF data structure, it relies on the ``head``
coordinate frame. Any coordinate frame can be transformed
to ``head`` if the fiducials (i.e. LPA, RPA and Nasion) are
defined. One can use this function to estimate those fiducials
and then use ``mne.channels.compute_native_head_t(montage)``
to get the head <-> MRI transform.
"""
# get coordframe and fiducial coordinates
montage_bunch = _get_data_as_dict_from_dig(self.dig)
# get the coordinate frame and check that it's MRI
if montage_bunch.coord_frame != FIFF.FIFFV_COORD_MRI:
raise RuntimeError(
f'Montage should be in the "mri" coordinate frame '
f"to use `add_estimated_fiducials`. The current coordinate "
f"frame is {montage_bunch.coord_frame}"
)
# estimate LPA, nasion, RPA from FreeSurfer fsaverage
fids_mri = list(get_mni_fiducials(subject, subjects_dir))
# add those digpoints to front of montage
self.dig = fids_mri + self.dig
return self
@verbose
def add_mni_fiducials(self, subjects_dir=None, verbose=None):
"""Add fiducials to a montage in MNI space.
Parameters
----------
%(subjects_dir)s
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
Notes
-----
``fsaverage`` is in MNI space and so its fiducials can be
added to a montage in "mni_tal". MNI is an ACPC-aligned
coordinate system (the posterior commissure is the origin)
so since BIDS requires channel locations for ECoG, sEEG and
DBS to be in ACPC space, this function can be used to allow
those coordinate to be transformed to "head" space (origin
between LPA and RPA).
"""
montage_bunch = _get_data_as_dict_from_dig(self.dig)
# get the coordinate frame and check that it's MNI TAL
if montage_bunch.coord_frame != FIFF.FIFFV_MNE_COORD_MNI_TAL:
raise RuntimeError(
f'Montage should be in the "mni_tal" coordinate frame '
f"to use `add_estimated_fiducials`. The current coordinate "
f"frame is {montage_bunch.coord_frame}"
)
fids_mni = get_mni_fiducials("fsaverage", subjects_dir)
for fid in fids_mni:
# "mri" and "mni_tal" are equivalent for fsaverage
assert fid["coord_frame"] == FIFF.FIFFV_COORD_MRI
fid["coord_frame"] = FIFF.FIFFV_MNE_COORD_MNI_TAL
self.dig = fids_mni + self.dig
return self
@verbose
def remove_fiducials(self, verbose=None):
"""Remove the fiducial points from a montage.
Parameters
----------
%(verbose)s
Returns
-------
inst : instance of DigMontage
The instance, modified in-place.
Notes
-----
MNE will transform a montage to the internal "head" coordinate
frame if the fiducials are present. Under most circumstances, this
is ideal as it standardizes the coordinate frame for things like
plotting. However, in some circumstances, such as saving a ``raw``
with intracranial data to BIDS format, the coordinate frame
should not be changed by removing fiducials.
"""
for d in self.dig.copy():
if d["kind"] == FIFF.FIFFV_POINT_CARDINAL:
self.dig.remove(d)
return self
VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)
def _check_unit_and_get_scaling(unit):
_check_option("unit", unit, sorted(VALID_SCALES.keys()))
return VALID_SCALES[unit]
def transform_to_head(montage):
"""Transform a DigMontage object into head coordinate.
Parameters
----------
montage : instance of DigMontage
The montage.
Returns
-------
montage : instance of DigMontage
The montage after transforming the points to head
coordinate system.
Notes
-----
This function requires that the LPA, RPA and Nasion fiducial
points are available. If they are not, they will be added based by
projecting the fiducials onto a sphere with radius equal to the average
distance of each point to the origin (in the given coordinate frame).
This function assumes that all fiducial points are in the same coordinate
frame (e.g. 'unknown') and it will convert all the point in this coordinate
system to Neuromag head coordinate system.
.. versionchanged:: 1.2
Fiducial points will be added automatically if the montage does not
have them.
"""
# Get fiducial points and their coord_frame
native_head_t = compute_native_head_t(montage)
montage = montage.copy() # to avoid inplace modification
if native_head_t["from"] != FIFF.FIFFV_COORD_HEAD:
for d in montage.dig:
if d["coord_frame"] == native_head_t["from"]:
d["r"] = apply_trans(native_head_t, d["r"])
d["coord_frame"] = FIFF.FIFFV_COORD_HEAD
_ensure_fiducials_head(montage.dig)
return montage
def read_dig_dat(fname):
r"""Read electrode positions from a ``*.dat`` file.
.. Warning::
This function was implemented based on ``*.dat`` files available from
`Compumedics <https://compumedicsneuroscan.com>`__ and might not work
as expected with novel files. If it does not read your files correctly
please contact the MNE-Python developers.
Parameters
----------
fname : path-like
File from which to read electrode locations.
Returns
-------
montage : DigMontage
The montage.
See Also
--------
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
``*.dat`` files are plain text files and can be inspected and amended with
a plain text editor.
"""
from ._standard_montage_utils import _check_dupes_odict
fname = _check_fname(fname, overwrite="read", must_exist=True)
with open(fname) as fid:
lines = fid.readlines()
ch_names, poss = list(), list()
nasion = lpa = rpa = None
for i, line in enumerate(lines):
items = line.split()
if not items:
continue
elif len(items) != 5:
raise ValueError(
f"Error reading {fname}, line {i} has unexpected number of entries:\n"
f"{line.rstrip()}"
)
num = items[1]
if num == "67":
continue # centroid
pos = np.array([float(item) for item in items[2:]])
if num == "78":
nasion = pos
elif num == "76":
lpa = pos
elif num == "82":
rpa = pos
else:
ch_names.append(items[0])
poss.append(pos)
electrodes = _check_dupes_odict(ch_names, poss)
return make_dig_montage(electrodes, nasion, lpa, rpa)
def read_dig_fif(fname):
r"""Read digitized points from a .fif file.
Note that electrode names are not present in the .fif file so
they are here defined with the convention from VectorView
systems (EEG001, EEG002, etc.)
Parameters
----------
fname : path-like
FIF file from which to read digitization locations.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_dat
read_dig_egi
read_dig_captrak
read_dig_polhemus_isotrak
read_dig_hpts
read_dig_localite
make_dig_montage
"""
fname = _check_fname(fname, overwrite="read", must_exist=True)
# Load the dig data
f, tree = fiff_open(fname)[:2]
with f as fid:
dig = _read_dig_fif(fid, tree)
ch_names = []
for d in dig:
if d["kind"] == FIFF.FIFFV_POINT_EEG:
ch_names.append("EEG%03d" % d["ident"])
montage = DigMontage(dig=dig, ch_names=ch_names)
return montage
def read_dig_hpts(fname, unit="mm"):
"""Read historical ``.hpts`` MNE-C files.
Parameters
----------
fname : path-like
The filepath of .hpts file.
unit : ``'m'`` | ``'cm'`` | ``'mm'``
Unit of the positions. Defaults to ``'mm'``.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_dat
read_dig_egi
read_dig_fif
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
Notes
-----
The hpts format digitzer data file may contain comment lines starting
with the pound sign (#) and data lines of the form::
<*category*> <*identifier*> <*x/mm*> <*y/mm*> <*z/mm*>
where:
``<*category*>``
defines the type of points. Allowed categories are: ``hpi``,
``cardinal`` (fiducial), ``eeg``, and ``extra`` corresponding to
head-position indicator coil locations, cardinal landmarks, EEG
electrode locations, and additional head surface points,
respectively.
``<*identifier*>``
identifies the point. The identifiers are usually sequential
numbers. For cardinal landmarks, 1 = left auricular point,
2 = nasion, and 3 = right auricular point. For EEG electrodes,
identifier = 0 signifies the reference electrode.
``<*x/mm*> , <*y/mm*> , <*z/mm*>``
Location of the point, usually in the head coordinate system
in millimeters. If your points are in [m] then unit parameter can
be changed.
For example::
cardinal 2 -5.6729 -12.3873 -30.3671
cardinal 1 -37.6782 -10.4957 91.5228
cardinal 3 -131.3127 9.3976 -22.2363
hpi 1 -30.4493 -11.8450 83.3601
hpi 2 -122.5353 9.2232 -28.6828
hpi 3 -6.8518 -47.0697 -37.0829
hpi 4 7.3744 -50.6297 -12.1376
hpi 5 -33.4264 -43.7352 -57.7756
eeg FP1 3.8676 -77.0439 -13.0212
eeg FP2 -31.9297 -70.6852 -57.4881
eeg F7 -6.1042 -68.2969 45.4939
...
"""
from ._standard_montage_utils import _str, _str_names
fname = _check_fname(fname, overwrite="read", must_exist=True)
_scale = _check_unit_and_get_scaling(unit)
out = np.genfromtxt(fname, comments="#", dtype=(_str, _str, "f8", "f8", "f8"))
kind, label = _str_names(out["f0"]), _str_names(out["f1"])
kind = [k.lower() for k in kind]
xyz = np.array([out["f%d" % ii] for ii in range(2, 5)]).T
xyz *= _scale
del _scale
fid_idx_to_label = {"1": "lpa", "2": "nasion", "3": "rpa"}
fid = {
fid_idx_to_label[label[ii]]: this_xyz
for ii, this_xyz in enumerate(xyz)
if kind[ii] == "cardinal"
}
ch_pos = {
label[ii]: this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "eeg"
}
hpi = np.array([this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "hpi"])
hpi.shape = (-1, 3) # in case it's empty
hsp = np.array([this_xyz for ii, this_xyz in enumerate(xyz) if kind[ii] == "extra"])
hsp.shape = (-1, 3) # in case it's empty
return make_dig_montage(ch_pos=ch_pos, **fid, hpi=hpi, hsp=hsp)
def read_dig_egi(fname):
"""Read electrode locations from EGI system.
Parameters
----------
fname : path-like
EGI MFF XML coordinates file from which to read digitization locations.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_captrak
read_dig_dat
read_dig_fif
read_dig_hpts
read_dig_localite
read_dig_polhemus_isotrak
make_dig_montage
"""
_check_fname(fname, overwrite="read", must_exist=True)
data = _read_dig_montage_egi(
fname=fname, _scaling=1.0, _all_data_kwargs_are_none=True
)
return make_dig_montage(**data)
def read_dig_captrak(fname):
"""Read electrode locations from CapTrak Brain Products system.
Parameters
----------
fname : path-like
BrainVision CapTrak coordinates file from which to read EEG electrode
locations. This is typically in XML format with the .bvct extension.
Returns
-------
montage : instance of DigMontage
The montage.
See Also
--------
DigMontage
read_dig_dat
read_dig_egi
read_dig_fif