forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
interpolation.py
417 lines (351 loc) · 14.1 KB
/
interpolation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from numpy.polynomial.legendre import legval
from scipy.interpolate import RectBivariateSpline
from scipy.linalg import pinv
from scipy.spatial.distance import pdist, squareform
from .._fiff.meas_info import _simplify_info
from .._fiff.pick import pick_channels, pick_info, pick_types
from ..surface import _normalize_vectors
from ..utils import _validate_type, logger, verbose, warn
def _calc_h(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline h function between points on a sphere.
Parameters
----------
cosang : array-like | float
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffnes of the spline. Also referred to as ``m``.
n_legendre_terms : int
number of Legendre terms to evaluate.
"""
factors = [
(2 * n + 1) / (n ** (stiffness - 1) * (n + 1) ** (stiffness - 1) * 4 * np.pi)
for n in range(1, n_legendre_terms + 1)
]
return legval(cosang, [0] + factors)
def _calc_g(cosang, stiffness=4, n_legendre_terms=50):
"""Calculate spherical spline g function between points on a sphere.
Parameters
----------
cosang : array-like of float, shape(n_channels, n_channels)
cosine of angles between pairs of points on a spherical surface. This
is equivalent to the dot product of unit vectors.
stiffness : float
stiffness of the spline.
n_legendre_terms : int
number of Legendre terms to evaluate.
Returns
-------
G : np.ndrarray of float, shape(n_channels, n_channels)
The G matrix.
"""
factors = [
(2 * n + 1) / (n**stiffness * (n + 1) ** stiffness * 4 * np.pi)
for n in range(1, n_legendre_terms + 1)
]
return legval(cosang, [0] + factors)
def _make_interpolation_matrix(pos_from, pos_to, alpha=1e-5):
"""Compute interpolation matrix based on spherical splines.
Implementation based on [1]
Parameters
----------
pos_from : np.ndarray of float, shape(n_good_sensors, 3)
The positions to interpolate from.
pos_to : np.ndarray of float, shape(n_bad_sensors, 3)
The positions to interpolate.
alpha : float
Regularization parameter. Defaults to 1e-5.
Returns
-------
interpolation : np.ndarray of float, shape(len(pos_from), len(pos_to))
The interpolation matrix that maps good signals to the location
of bad signals.
References
----------
[1] Perrin, F., Pernier, J., Bertrand, O. and Echallier, JF. (1989).
Spherical splines for scalp potential and current density mapping.
Electroencephalography Clinical Neurophysiology, Feb; 72(2):184-7.
"""
pos_from = pos_from.copy()
pos_to = pos_to.copy()
n_from = pos_from.shape[0]
n_to = pos_to.shape[0]
# normalize sensor positions to sphere
_normalize_vectors(pos_from)
_normalize_vectors(pos_to)
# cosine angles between source positions
cosang_from = pos_from.dot(pos_from.T)
cosang_to_from = pos_to.dot(pos_from.T)
G_from = _calc_g(cosang_from)
G_to_from = _calc_g(cosang_to_from)
assert G_from.shape == (n_from, n_from)
assert G_to_from.shape == (n_to, n_from)
if alpha is not None:
G_from.flat[:: len(G_from) + 1] += alpha
C = np.vstack(
[
np.hstack([G_from, np.ones((n_from, 1))]),
np.hstack([np.ones((1, n_from)), [[0]]]),
]
)
C_inv = pinv(C)
interpolation = np.hstack([G_to_from, np.ones((n_to, 1))]) @ C_inv[:, :-1]
assert interpolation.shape == (n_to, n_from)
return interpolation
def _do_interp_dots(inst, interpolation, goods_idx, bads_idx):
"""Dot product of channel mapping matrix to channel data."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked), "inst")
inst._data[..., bads_idx, :] = np.matmul(
interpolation, inst._data[..., goods_idx, :]
)
@verbose
def _interpolate_bads_eeg(inst, origin, exclude=None, ecog=False, verbose=None):
if exclude is None:
exclude = list()
bads_idx = np.zeros(len(inst.ch_names), dtype=bool)
goods_idx = np.zeros(len(inst.ch_names), dtype=bool)
picks = pick_types(inst.info, meg=False, eeg=not ecog, ecog=ecog, exclude=exclude)
inst.info._check_consistency()
bads_idx[picks] = [inst.ch_names[ch] in inst.info["bads"] for ch in picks]
if len(picks) == 0 or bads_idx.sum() == 0:
return
goods_idx[picks] = True
goods_idx[bads_idx] = False
pos = inst._get_channel_positions(picks)
# Make sure only EEG are used
bads_idx_pos = bads_idx[picks]
goods_idx_pos = goods_idx[picks]
# test spherical fit
distance = np.linalg.norm(pos - origin, axis=-1)
distance = np.mean(distance / np.mean(distance))
if np.abs(1.0 - distance) > 0.1:
warn(
"Your spherical fit is poor, interpolation results are "
"likely to be inaccurate."
)
pos_good = pos[goods_idx_pos] - origin
pos_bad = pos[bads_idx_pos] - origin
logger.info(f"Computing interpolation matrix from {len(pos_good)} sensor positions")
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
logger.info(f"Interpolating {len(pos_bad)} sensors")
_do_interp_dots(inst, interpolation, goods_idx, bads_idx)
@verbose
def _interpolate_bads_ecog(inst, origin, exclude=None, verbose=None):
_interpolate_bads_eeg(inst, origin, exclude=exclude, ecog=True, verbose=verbose)
def _interpolate_bads_meg(
inst, mode="accurate", origin=(0.0, 0.0, 0.04), verbose=None, ref_meg=False
):
return _interpolate_bads_meeg(
inst, mode, origin, ref_meg=ref_meg, eeg=False, verbose=verbose
)
@verbose
def _interpolate_bads_nan(
inst,
ch_type,
ref_meg=False,
exclude=(),
*,
verbose=None,
):
info = _simplify_info(inst.info)
picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **{ch_type: True})
use_ch_names = [inst.info["ch_names"][p] for p in picks_type]
bads_type = [ch for ch in inst.info["bads"] if ch in use_ch_names]
if len(bads_type) == 0 or len(picks_type) == 0:
return
# select the bad channels to be interpolated
picks_bad = pick_channels(inst.info["ch_names"], bads_type, exclude=[])
inst._data[..., picks_bad, :] = np.nan
@verbose
def _interpolate_bads_meeg(
inst,
mode="accurate",
origin=(0.0, 0.0, 0.04),
meg=True,
eeg=True,
ref_meg=False,
exclude=(),
*,
method=None,
verbose=None,
):
from ..forward import _map_meg_or_eeg_channels
if method is None:
method = {"meg": "MNE", "eeg": "MNE"}
bools = dict(meg=meg, eeg=eeg)
info = _simplify_info(inst.info)
for ch_type, do in bools.items():
if not do:
continue
kw = dict(meg=False, eeg=False)
kw[ch_type] = True
picks_type = pick_types(info, ref_meg=ref_meg, exclude=exclude, **kw)
picks_good = pick_types(info, ref_meg=ref_meg, exclude="bads", **kw)
use_ch_names = [inst.info["ch_names"][p] for p in picks_type]
bads_type = [ch for ch in inst.info["bads"] if ch in use_ch_names]
if len(bads_type) == 0 or len(picks_type) == 0:
continue
# select the bad channels to be interpolated
picks_bad = pick_channels(inst.info["ch_names"], bads_type, exclude=[])
# do MNE based interpolation
if ch_type == "eeg":
picks_to = picks_type
bad_sel = np.isin(picks_type, picks_bad)
else:
picks_to = picks_bad
bad_sel = slice(None)
info_from = pick_info(inst.info, picks_good)
info_to = pick_info(inst.info, picks_to)
mapping = _map_meg_or_eeg_channels(info_from, info_to, mode=mode, origin=origin)
mapping = mapping[bad_sel]
_do_interp_dots(inst, mapping, picks_good, picks_bad)
@verbose
def _interpolate_bads_nirs(inst, exclude=(), verbose=None):
from mne.preprocessing.nirs import _validate_nirs_info
if len(pick_types(inst.info, fnirs=True, exclude=())) == 0:
return
# Returns pick of all nirs and ensures channels are correctly ordered
picks_nirs = _validate_nirs_info(inst.info)
nirs_ch_names = [inst.info["ch_names"][p] for p in picks_nirs]
nirs_ch_names = [ch for ch in nirs_ch_names if ch not in exclude]
bads_nirs = [ch for ch in inst.info["bads"] if ch in nirs_ch_names]
if len(bads_nirs) == 0:
return
picks_bad = pick_channels(inst.info["ch_names"], bads_nirs, exclude=[])
bads_mask = [p in picks_bad for p in picks_nirs]
chs = [inst.info["chs"][i] for i in picks_nirs]
locs3d = np.array([ch["loc"][:3] for ch in chs])
dist = pdist(locs3d)
dist = squareform(dist)
for bad in picks_bad:
dists_to_bad = dist[bad]
# Ignore distances to self
dists_to_bad[dists_to_bad == 0] = np.inf
# Ignore distances to other bad channels
dists_to_bad[bads_mask] = np.inf
# Find closest remaining channels for same frequency
closest_idx = np.argmin(dists_to_bad) + (bad % 2)
inst._data[bad] = inst._data[closest_idx]
# TODO: this seems like a bug because it does not respect reset_bads
inst.info["bads"] = [ch for ch in inst.info["bads"] if ch in exclude]
return inst
def _find_seeg_electrode_shaft(pos, tol_shaft=0.002, tol_spacing=1):
# 1) find nearest neighbor to define the electrode shaft line
# 2) find all contacts on the same line
# 3) remove contacts with large distances
dist = squareform(pdist(pos))
np.fill_diagonal(dist, np.inf)
shafts = list()
shaft_ts = list()
for i, n1 in enumerate(pos):
if any([i in shaft for shaft in shafts]):
continue
n2 = pos[np.argmin(dist[i])] # 1
# https://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
shaft_dists = np.linalg.norm(
np.cross((pos - n1), (pos - n2)), axis=1
) / np.linalg.norm(n2 - n1)
shaft = np.where(shaft_dists < tol_shaft)[0] # 2
shaft_prev = None
for _ in range(10): # avoid potential cycles
if np.array_equal(shaft, shaft_prev):
break
shaft_prev = shaft
# compute median shaft line
v = np.median(
[
pos[i] - pos[j]
for idx, i in enumerate(shaft)
for j in shaft[idx + 1 :]
],
axis=0,
)
c = np.median(pos[shaft], axis=0)
# recompute distances
shaft_dists = np.linalg.norm(
np.cross((pos - c), (pos - c + v)), axis=1
) / np.linalg.norm(v)
shaft = np.where(shaft_dists < tol_shaft)[0]
ts = np.array([np.dot(c - n0, v) / np.linalg.norm(v) ** 2 for n0 in pos[shaft]])
shaft_order = np.argsort(ts)
shaft = shaft[shaft_order]
ts = ts[shaft_order]
# only include the largest group with spacing with the error tolerance
# avoid interpolating across spans between contacts
t_diffs = np.diff(ts)
t_diff_med = np.median(t_diffs)
spacing_errors = (t_diffs - t_diff_med) / t_diff_med
groups = list()
group = [shaft[0]]
for j in range(len(shaft) - 1):
if spacing_errors[j] > tol_spacing:
groups.append(group)
group = [shaft[j + 1]]
else:
group.append(shaft[j + 1])
groups.append(group)
group = [group for group in groups if i in group][0]
ts = ts[np.isin(shaft, group)]
shaft = np.array(group, dtype=int)
shafts.append(shaft)
shaft_ts.append(ts)
return shafts, shaft_ts
@verbose
def _interpolate_bads_seeg(
inst, exclude=None, tol_shaft=0.002, tol_spacing=1, verbose=None
):
if exclude is None:
exclude = list()
picks = pick_types(inst.info, meg=False, seeg=True, exclude=exclude)
inst.info._check_consistency()
bads_idx = np.isin(np.array(inst.ch_names)[picks], inst.info["bads"])
if len(picks) == 0 or bads_idx.sum() == 0:
return
pos = inst._get_channel_positions(picks)
# Make sure only sEEG are used
bads_idx_pos = bads_idx[picks]
shafts, shaft_ts = _find_seeg_electrode_shaft(
pos, tol_shaft=tol_shaft, tol_spacing=tol_spacing
)
# interpolate the bad contacts
picks_bad = list(np.where(bads_idx_pos)[0])
for shaft, ts in zip(shafts, shaft_ts):
bads_shaft = np.array([idx for idx in picks_bad if idx in shaft])
if bads_shaft.size == 0:
continue
goods_shaft = shaft[np.isin(shaft, bads_shaft, invert=True)]
if goods_shaft.size < 4: # cubic spline requires 3 channels
msg = "No shaft" if shaft.size < 4 else "Not enough good channels"
no_shaft_chs = " and ".join(np.array(inst.ch_names)[bads_shaft])
raise RuntimeError(
f"{msg} found in a line with {no_shaft_chs} "
"at least 3 good channels on the same line "
f"are required for interpolation, {goods_shaft.size} found. "
f"Dropping {no_shaft_chs} is recommended."
)
logger.debug(
f"Interpolating {np.array(inst.ch_names)[bads_shaft]} using "
f"data from {np.array(inst.ch_names)[goods_shaft]}"
)
bads_shaft_idx = np.where(np.isin(shaft, bads_shaft))[0]
goods_shaft_idx = np.where(~np.isin(shaft, bads_shaft))[0]
z = inst._data[..., goods_shaft, :]
is_epochs = z.ndim == 3
if is_epochs:
z = z.swapaxes(0, 1)
z = z.reshape(z.shape[0], -1)
y = np.arange(z.shape[-1])
out = RectBivariateSpline(x=ts[goods_shaft_idx], y=y, z=z)(
x=ts[bads_shaft_idx], y=y
)
if is_epochs:
out = out.reshape(bads_shaft.size, inst._data.shape[0], -1)
out = out.swapaxes(0, 1)
inst._data[..., bads_shaft, :] = out