-
-
Notifications
You must be signed in to change notification settings - Fork 25.5k
/
Copy path_isotonic.pyx
116 lines (100 loc) · 3.65 KB
/
_isotonic.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
# Uses the pool adjacent violators algorithm (PAVA), with the
# enhancement of searching for the longest decreasing subsequence to
# pool at each step.
import numpy as np
from cython cimport floating
def _inplace_contiguous_isotonic_regression(floating[::1] y, floating[::1] w):
cdef:
Py_ssize_t n = y.shape[0], i, k
floating prev_y, sum_wy, sum_w
Py_ssize_t[::1] target = np.arange(n, dtype=np.intp)
# target describes a list of blocks. At any time, if [i..j] (inclusive) is
# an active block, then target[i] := j and target[j] := i.
# For "active" indices (block starts):
# w[i] := sum{w_orig[j], j=[i..target[i]]}
# y[i] := sum{y_orig[j]*w_orig[j], j=[i..target[i]]} / w[i]
with nogil:
i = 0
while i < n:
k = target[i] + 1
if k == n:
break
if y[i] < y[k]:
i = k
continue
sum_wy = w[i] * y[i]
sum_w = w[i]
while True:
# We are within a decreasing subsequence.
prev_y = y[k]
sum_wy += w[k] * y[k]
sum_w += w[k]
k = target[k] + 1
if k == n or prev_y < y[k]:
# Non-singleton decreasing subsequence is finished,
# update first entry.
y[i] = sum_wy / sum_w
w[i] = sum_w
target[i] = k - 1
target[k - 1] = i
if i > 0:
# Backtrack if we can. This makes the algorithm
# single-pass and ensures O(n) complexity.
i = target[i - 1]
# Otherwise, restart from the same point.
break
# Reconstruct the solution.
i = 0
while i < n:
k = target[i] + 1
y[i + 1 : k] = y[i]
i = k
def _make_unique(const floating[::1] X,
const floating[::1] y,
const floating[::1] sample_weights):
"""Average targets for duplicate X, drop duplicates.
Aggregates duplicate X values into a single X value where
the target y is a (sample_weighted) average of the individual
targets.
Assumes that X is ordered, so that all duplicates follow each other.
"""
unique_values = len(np.unique(X))
if floating is float:
dtype = np.float32
else:
dtype = np.float64
cdef floating[::1] y_out = np.empty(unique_values, dtype=dtype)
cdef floating[::1] x_out = np.empty_like(y_out)
cdef floating[::1] weights_out = np.empty_like(y_out)
cdef floating current_x = X[0]
cdef floating current_y = 0
cdef floating current_weight = 0
cdef int i = 0
cdef int j
cdef floating x
cdef int n_samples = len(X)
cdef floating eps = np.finfo(dtype).resolution
for j in range(n_samples):
x = X[j]
if x - current_x >= eps:
# next unique value
x_out[i] = current_x
weights_out[i] = current_weight
y_out[i] = current_y / current_weight
i += 1
current_x = x
current_weight = sample_weights[j]
current_y = y[j] * sample_weights[j]
else:
current_weight += sample_weights[j]
current_y += y[j] * sample_weights[j]
x_out[i] = current_x
weights_out[i] = current_weight
y_out[i] = current_y / current_weight
return(
np.asarray(x_out[:i+1]),
np.asarray(y_out[:i+1]),
np.asarray(weights_out[:i+1]),
)