forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththneed.py
293 lines (263 loc) · 11.5 KB
/
thneed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# this can be constructed from a cl_cache or loaded from a thneed file
import time
import struct
import json
import traceback
import numpy as np
from tinygrad.runtime.ops_gpu import CLProgram
from tinygrad.helpers import prod, getenv
from collections import defaultdict
import pyopencl as cl
from tinygrad.runtime.ops_gpu import CL, OSX_TIMING_RATIO
DEBUGCL = getenv("DEBUGCL", 0)
FLOAT16 = getenv("FLOAT16", 0)
class Thneed:
def __init__(self, cl_cache=[], inputs={}):
self.cl_cache, self.inputs = cl_cache[:], inputs
self.gobj = 0
# build graph
# NOTE: if CLCACHE=1, this is wrong!
nodes = defaultdict(lambda: {'in_edges': [], 'out_edges': []})
for _, args in self.cl_cache:
# output is always the first parameter
for a in args[3:]:
nodes[a]['out_edges'].append(args[2])
nodes[args[2]]['in_edges'].append(a)
# get buffers to save
self.buffers_to_save = set()
self.outputs = []
for n in nodes.keys():
if len(nodes[n]['in_edges']) == 0:
self.buffers_to_save.add(n)
if len(nodes[n]['out_edges']) == 0:
self.outputs.append(n)
fake_inputs = []
for k,n in self.inputs.items():
if n in self.buffers_to_save:
self.buffers_to_save.remove(n)
else:
print(f"WARNING: {k} was not a used input, removing it")
fake_inputs.append(k)
for k in fake_inputs:
del self.inputs[k]
def load(self, input_fn):
float32 = not FLOAT16
mf = cl.mem_flags
image_fmt = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT if float32 else cl.channel_type.HALF_FLOAT)
image_fmt_32 = cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.FLOAT)
with open(input_fn, "rb") as f:
json_len = struct.unpack("I", f.read(4))[0]
jdat = json.loads(f.read(json_len).decode('latin_1'))
weights = f.read()
# load in the buffers
bufs = {'\x00\x00\x00\x00\x00\x00\x00\x00': None}
bufs_loaded = {}
ptr = 0
for o in jdat['objects']:
#print(o)
if o['needs_load']:
nptr = ptr + o['size']
o['data'] = weights[ptr:nptr]
ptr = nptr
if o['arg_type'] == "image2d_t" or o['arg_type'] == "image1d_t":
tfmt = image_fmt_32 if 'float32' in o and o['float32'] else image_fmt
if o['arg_type'] == "image2d_t":
if 'buffer_id' in o and o['height'] == 1 and not bufs_loaded[o['buffer_id']]:
# hack: use a image1d since we can back that with a buffer
buf = cl.Image(CL.cl_ctx, mf.READ_WRITE, tfmt, shape=(o['width'],), buffer=bufs[o['buffer_id']])
else:
# buffer isn't supported in image2d, copy buffer into image
if 'buffer_id' in o and bufs_loaded[o['buffer_id']]:
arr = np.zeros(bufs[o['buffer_id']].size // 2, dtype=np.float16)
cl.enqueue_copy(q, arr, bufs[o['buffer_id']])
buf = cl.Image(CL.cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, tfmt,
shape=(o['width'], o['height']), pitches=(o['row_pitch'],), hostbuf=arr)
elif o['needs_load']:
buf = cl.Image(CL.cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, tfmt,
shape=(o['width'], o['height']), pitches=(o['row_pitch'],), hostbuf=o['data'])
else:
buf = cl.Image(CL.cl_ctx, mf.READ_WRITE, tfmt, shape=(o['width'], o['height']))
if o['arg_type'] == "image1d_t":
assert not o['needs_load']
assert not bufs_loaded[o['buffer_id']]
buf = cl.Image(CL.cl_ctx, mf.READ_WRITE, tfmt, shape=(o['width'],), buffer=bufs[o['buffer_id']])
else:
if 'data' in o:
buf = cl.Buffer(CL.cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=o['data'])
else:
# zero out buffers
buf = cl.Buffer(CL.cl_ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=b'\x00'*o['size'])
bufs[o['id']] = buf
bufs_loaded[o['id']] = 'data' in o
# if it's loaded, it's saved
if 'data' in o:
self.buffers_to_save.add(buf)
# load in the programs (this isn't used)
prgs = {}
for k,v in jdat['programs'].items():
print("building", k)
try:
prgs[k] = CLProgram(k, v, rename=False)
except Exception:
print("FAILED", k)
traceback.print_exc()
exit(0)
# load binaries
for o in jdat['binaries']:
nptr = ptr + o['length']
prgs[o['name']] = CLProgram(o['name'], weights[ptr:nptr], binary=True)
ptr = nptr
# populate the cl_cache
for i,k in enumerate(jdat['kernels']):
kernel = prgs[k['name']]
aaa = []
for j,(a,sz) in enumerate(zip(k['args'], k['args_size'])):
if len(a) == 0:
aa = cl.LocalMemory(sz)
elif len(a) == 4:
a = a.encode('latin_1')
aa = np.uint32(struct.unpack("I", a)[0])
elif len(a) == 2:
a = a.encode('latin_1')
aa = np.uint16(struct.unpack("H", a)[0])
elif len(a) == 8:
#print(i,j,struct.unpack("Q", a.encode('latin_1'))[0])
aa = bufs[a]
aaa.append(aa)
self.cl_cache.append((kernel, [k['global_work_size'], k['local_work_size'], *aaa]))
# load inputs
for k in jdat['inputs']:
self.inputs[k['name']] = bufs[k['buffer_id']]
# load outputs
for k in jdat['outputs']:
self.outputs.append(bufs[k['buffer_id']])
def save(self, output_fn):
# this is the struct that will be saved
jdat = {"binaries": [], "programs": {}, "kernels": [], "objects": []}
# build the pieces of this struct
weights = []
binaries = []
saved_objs = set()
saved_binaries = set()
for prg, args in self.cl_cache:
# get binaries for saving
if prg.name not in saved_binaries:
binary = prg.clprogram.get_info(cl.program_info.BINARIES)
assert len(binary) == 1
jdat['binaries'].append({"name":prg.name, "length":len(binary[0])})
binaries.append(binary[0])
saved_binaries.add(prg.name)
# get the args from the kernel, some need the data saved
targs, args_size = [], []
argdtypes = prg.argdtypes if prg.argdtypes is not None else [None]*(len(args)-2)
for a,d in zip(args[2:], argdtypes):
if d == np.int16:
targs.append(struct.pack("H", a).decode("latin_1"))
args_size.append(2)
elif d == np.int32:
targs.append(struct.pack("I", a).decode("latin_1"))
args_size.append(4)
elif isinstance(a, cl.LocalMemory):
targs.append("")
args_size.append(a.size)
elif d is None:
if getattr(a, "global_id", None) is None:
setattr(a, "global_id", self.gobj)
self.gobj += 1
ptr = struct.pack("Q", a.global_id).decode("latin_1")
if ptr not in saved_objs:
if isinstance(a, cl.Buffer):
needs_load = a in self.buffers_to_save
jdat['objects'].append({
"id": ptr, "arg_type": "float*", "needs_load": needs_load, "size": a.size,
})
if needs_load:
data = np.empty(a.size//4, dtype=np.float32)
cl.enqueue_copy(CL.cl_queue[0], data, a, is_blocking=True)
weights.append(data.tobytes())
elif isinstance(a, cl.Image):
assert a.format == cl.ImageFormat(cl.channel_order.RGBA, cl.channel_type.HALF_FLOAT if FLOAT16 else cl.channel_type.FLOAT), "wrong type"
needs_load = a in self.buffers_to_save
row_pitch = (a.shape[0]*4*(2 if FLOAT16 else 4) + 63)//64 * 64
size = row_pitch * a.shape[1]
# this is *2 if float16 and *4 if float32
buf = cl.Buffer(CL.cl_ctx, cl.mem_flags.READ_WRITE, size=size * (2 if FLOAT16 else 1))
# zero out the buffer
cl.enqueue_copy(CL.cl_queue[0], buf, b'\x00'*buf.size, is_blocking=True)
CLProgram("from_image_strided", """
__kernel void from_image_strided(read_only image2d_t in, __global float4 *out, int row_pitch) {
const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
int2 l;
l.y = get_global_id(1);
l.x = get_global_id(0);
out[l.y*row_pitch + l.x] = read_imagef(in, smp, l);
}
""", argdtypes=(None, None, np.int32))(a.shape, None, a, buf, row_pitch//(4*(2 if FLOAT16 else 4)))
# multiple of 32 isn't enough
jdat['objects'].append({
"id": ptr, "needs_load": needs_load, "size": size, "arg_type": "image2d_t",
"width": a.shape[0], "height": a.shape[1], "row_pitch": row_pitch, "float32": not FLOAT16,
})
if needs_load:
data = np.empty(size//(2 if FLOAT16 else 4), dtype=np.float32)
cl.enqueue_copy(CL.cl_queue[0], data, buf, is_blocking=True)
if FLOAT16: data = data.astype(np.float16)
weights.append(data.tobytes())
else:
raise Exception("unknown object", a)
#print(jdat['objects'][-1])
saved_objs.add(ptr)
targs.append(ptr)
args_size.append(8)
else:
raise Exception("idk this type")
# save the kernel itself
jdat['kernels'].append({
"name": prg.name,
"work_dim": len(args[0]),
"global_work_size": args[0],
# TODO: C++ thneed requires a local_work_size, so we fill it with ones
"local_work_size": [1 for _ in args[0]] if args[1] is None else args[1],
"num_args": len(args)-2,
"args": targs,
"args_size": args_size
})
jdat['outputs'] = [{
"buffer_id": struct.pack("Q", x.global_id).decode("latin_1"),
"size": x.size,
} for x in self.outputs]
jdat['inputs'] = [{
"buffer_id": struct.pack("Q", v.global_id).decode("latin_1"),
"size": v.size,
"name": k
} for k,v in self.inputs.items()][::-1]
print(f"saving thneed to {output_fn}")
with open(output_fn, "wb") as f:
j = json.dumps(jdat, ensure_ascii=False).encode('latin_1')
f.write(struct.pack("I", len(j)))
f.write(j)
f.write(b''.join(weights))
f.write(b''.join(binaries))
def run(self):
events = []
st = time.monotonic()
for prg, args in self.cl_cache:
events.append(prg.clprg(CL.cl_queue[0], *args))
mt = time.monotonic()
CL.synchronize()
et = time.monotonic() - st
print(f"submit in {(mt-st)*1000.0:.2f} ms, total runtime is {et*1000.0:.2f} ms")
if DEBUGCL >= 2:
for i, ((prg, args), e) in enumerate(zip(self.cl_cache, events)):
print(f"{i:3d} {prg.name:20s} " + "queued @ %5.2f ms, submit @ %5.2fms, start @ %5.2f ms, end @ %5.2f ms" % tuple((x*OSX_TIMING_RATIO - st*1e9)/1e6 for x in [e.profile.queued, e.profile.submit, e.profile.start, e.profile.end]))
if DEBUGCL >= 1:
total_runtime = 0
for i, ((prg, args), e) in enumerate(zip(self.cl_cache, events)):
runtime = (e.profile.end - e.profile.start) * OSX_TIMING_RATIO
print(f"{i:3d} time {total_runtime/1e6:5.2f} ms running {prg.name:20s} with {str(args[0]):15s} {str(args[1]):15s} count {len(args)-2:2d} runtime {runtime/1e3:7.2f} us {(getattr(prg, 'op_estimate', float('nan')))/runtime:9.2f} GFLOPS -> {args[2].shape if hasattr(args[2], 'shape') else args[2].size}")
if hasattr(prg, 'prg') and ((DEBUGCL >= 2 and getenv("PRINT_KERNEL", -1) == i) or DEBUGCL >= 3):
print(prg.prg)
total_runtime += runtime
print(f"total runtime: {total_runtime/1e6:.2f} ms wall time: {et*1000.0:.2f} ms")
return total_runtime/1e9
return et