forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel_search.py
343 lines (327 loc) · 20.2 KB
/
kernel_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python
import random, traceback
import time
import itertools
from enum import Enum
import numpy as np
from tinygrad.ops import LazyOp, ReduceOps, BinaryOps, UnaryOps, MovementOps
from tinygrad.shape.shapetracker import ShapeTracker, View, ZeroView
from tinygrad.runtime.ops_gpu import GPUBuffer, CLASTKernel
from tinygrad.runtime.opencl import OSX_TIMING_RATIO
from tinygrad.helpers import getenv, DEBUG
from extra.lib_test_ast import test_ast
import pickle, dbm
intervention_cache = None
Interventions = Enum("Interventions", ["SWAP", "UPCAST", "SHIFT", "REDUCE"])
def get_interventions(k, winning_interventions=[]):
k.process()
p1, p2, p3, p4, p5 = [], [], [], [], []
p1 = [(Interventions.SWAP, x) for x in itertools.combinations(range(k.first_reduce), 2)]
p2 = [(Interventions.SWAP, x) for x in itertools.combinations(range(k.first_reduce + len(k.group_for_reduce), k.shape_len), 2)]
p3 = [(Interventions.UPCAST, None)] if max(st.shape[-1] for st in k.sts) <= 32 else []
for up_axis in range(k.shape_len):
if up_axis >= k.first_reduce and up_axis < (k.first_reduce + len(k.group_for_reduce)): continue
max_up = max(st.shape[up_axis] for st in k.sts)
if max_up == 1: continue
for amount in sorted(list(set([2,4,8,max_up]))):
if amount >= 32: continue
if not all(st.shape[up_axis] == 1 or st.shape[up_axis]%amount == 0 for st in k.sts): continue
p3.append((Interventions.UPCAST, (up_axis, amount)))
"""
for up_axis in range(1,k.first_reduce):
for amount in [4,8,16,32]:
if k.sts[0].shape[up_axis] % amount == 0:
p4.append((Interventions.SHIFT, (up_axis, amount, True)))
p4.append((Interventions.SHIFT, (up_axis, amount, False)))
"""
# no double reduce
#if len([x for x in winning_interventions if x[0] == Interventions.REDUCE]) == 0:
# in fact, reduce first
if len(winning_interventions) == 0:
for axis in range(k.first_reduce + len(k.group_for_reduce), k.shape_len):
max_up = max(st.shape[axis] for st in k.sts)
if max_up <= 1024: p5 += [(Interventions.REDUCE, (axis, max_up))]
if max_up % 256 == 0: p5 += [(Interventions.REDUCE, (axis, 256))]
if max_up % 16 == 0: p5 += [(Interventions.REDUCE, (axis, 16))]
return p1+p2+p3+p4+p5
def apply_intervention(k, typ, dat):
k.process()
if typ == Interventions.SWAP:
# swap axes
a1, a2 = dat
new_order = list(range(0, k.shape_len))
new_order[a1], new_order[a2] = new_order[a2], new_order[a1]
k.reshape_and_permute(None, new_order)
elif typ == Interventions.UPCAST:
if dat is not None:
# upcast
up_axis, amount = dat[0], dat[1]
# no change, we added a dimension
k.reshape_and_permute(
lambda x: list(x[0:up_axis]) + ([x[up_axis]//amount, amount] if x[up_axis] > 1 else [1,1]) + list(x[up_axis+1:]),
[i for i in range(k.shape_len+1) if i != up_axis+1] + [up_axis+1])
# drop the last dimension
k.upcast()
elif typ == Interventions.SHIFT:
up_axis, amount, flip = dat[0], dat[1], dat[2]
k.reshape_and_permute(
lambda x: list(x[0:up_axis]) + (([amount, x[up_axis]//amount] if flip else [x[up_axis]//amount, amount]) if x[up_axis] > 1 else [1,1]) + list(x[up_axis+1:]),
[up_axis] + [i for i in range(k.shape_len+1) if i != up_axis])
elif typ == Interventions.REDUCE:
up_axis, amount = dat[0], dat[1]
# no change, we added a dimension
k.reshape_and_permute(
lambda x: list(x[0:up_axis]) + ([x[up_axis]//amount, amount] if x[up_axis] > 1 else [1,1]) + list(x[up_axis+1:]),
[i for i in range(k.first_reduce) if i != up_axis+1] + [up_axis+1] + [i for i in range(k.first_reduce, k.shape_len+1) if i != up_axis+1])
k.group_for_reduce.append(amount)
k.simplify_ones()
k.simplify_merge_adjacent()
def run_and_time(k,cnt=3,local_override=None):
prog = k.codegen()
ret = []
for i in range(cnt):
t1 = time.monotonic_ns()
if local_override: prog.local_work_size = local_override
e = prog(*k.bufs)
e.wait()
t4 = time.monotonic_ns()
t2, t3 = e.profile.start * OSX_TIMING_RATIO, e.profile.end * OSX_TIMING_RATIO
#print(*[f"{(x-t1)*1e-3:7.2f} us" for x in [t1, t2, t3, t4]]) # TODO: this may be wrong on non OS X
#assert t1 < t2 < t3 < t4, "timings not in order"
ret.append(t3-t2)
#ret.append(t4-t1)
return min(ret)
def search_one(ast, winning_interventions=[], debug=False):
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
ints = get_interventions(k, winning_interventions)
options = [(run_and_time(k), None, 0.9)]
name = k.fxn.name
ops = k.fxn.op_estimate
if debug: print(f"{options[-1][1]} : {options[-1][0]*1e-3:.2f}")
for int in ints:
try:
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
apply_intervention(k, *int)
options.append((run_and_time(k), int, 1.0))
#test_ast(k)
if debug: print(f"{options[-1][1]} : {options[-1][0]*1e-3:.2f}")
except Exception:
if debug: print(int, "FAILED")
#traceback.print_exc()
pass
baseline = options[0]
options = sorted(options, key=lambda x: x[0]*x[2])
best = options[0]
print(f"{name:30s} {baseline[0]/1e3:9.2f} us -> {best[0]/1e3:9.2f} us {baseline[0]/best[0]:7.2f}x {ops/best[0]*1e-3:5.2f}T *with* {winning_interventions} + {best[1]}")
return best
def apply_optimization(k, ast, max_interventions=1, cache=True):
global intervention_cache
if intervention_cache is None: intervention_cache = dbm.open('/tmp/kopt.db', 'c')
from extra.kernel_search import search_one, apply_intervention
if k.key not in intervention_cache or cache == False:
winning_interventions = []
for i in range(max_interventions): # NOTE: multiple interventions is breaking the ASTs
oo = search_one(ast, winning_interventions)
if oo[1] is None: break
winning_interventions.append(oo[1])
intervention_cache[k.key] = pickle.dumps(winning_interventions)
ic = pickle.loads(intervention_cache[k.key])
if DEBUG >= 3: print("intervention", ic)
for w in ic: apply_intervention(k, *w)
def randomize_buffers(ast):
# before testing, we need to fill the buffers with randomness
bufs = get_buffers(ast)
for b in bufs:
randomness = np.random.default_rng().standard_normal(size=b._base_shape, dtype=np.float32)
if b._buf is not None: b._buf.copyin(randomness)
def one(ast, winning_interventions, local_override=None):
randomize_buffers(ast)
k = CLASTKernel(ast)
baseline = run_and_time(k, 1)
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
best = run_and_time(k, 1, local_override)
name = k.fxn.name
print(f"{name:30s} {baseline/1e3:9.2f} us -> {best/1e3:9.2f} us {baseline/best:7.2f}x *with* {winning_interventions}")
if not getenv("NOTEST"): test_ast(k)
def search(ast, start_interventions=[], depth=10):
winning_interventions = start_interventions[:]
randomize_buffers(ast)
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
best_time = baseline = run_and_time(k)
for i in range(depth):
print(winning_interventions)
oo = search_one(ast, winning_interventions, True)
print(oo)
if oo[1] is None: break
winning_interventions.append(oo[1])
best_time = oo[0]
# run best
print(f"winning interventions {winning_interventions}")
for i in range(3):
k = CLASTKernel(ast)
for w in winning_interventions: apply_intervention(k, *w)
k.codegen()(*k.bufs)
#k.print()
if not getenv("NOTEST"): test_ast(k)
print(f"improved from {baseline/1e6:.2f} ms to {best_time/1e6:.2f} ms, a {baseline/best_time:.2f}x speedup @ {k.info.flops/best_time:.2f} GFLOPS")
from tinygrad.ops import get_buffers
def test_correctness(ast):
randomize_buffers(ast)
from extra.lib_test_ast import test_ast
k = CLASTKernel(ast)
ints = get_interventions(k)
k.codegen()(*k.bufs)
test_ast(k)
print("correct at baseline")
for int in ints:
print("***** APPLYING INTERVENTION", int)
k = CLASTKernel(ast)
k.printbufs("old:")
apply_intervention(k, *int)
k.printbufs("new:")
k.codegen()(*k.bufs)
print("***** TESTING INTERVENTION", int)
test_ast(k)
if __name__ == "__main__":
if intervention_cache is None: intervention_cache = dbm.open('/tmp/kopt.db', 'c')
if getenv("DUMP"):
keys = list(intervention_cache.keys())
from collections import defaultdict
cnts = defaultdict(int)
for k in keys:
ic = pickle.loads(intervention_cache[k])
for i in ic:
cnts[i] += 1
for k,v in sorted(cnts.items(), key=lambda x: -x[1]):
print(k, v)
exit(0)
if getenv("OP", 0) == 1:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 3, 3, 3, 4), views=[View((1, 130, 258, 1, 12), (393216, 3072, 12, 12, 1), -3084), ZeroView((1, 128, 256, 1, 12), ((0, 1), (-1, 129), (-1, 257), (0, 1), (0, 12))), View((1, 64, 128, 8, 4, 3, 3, 3, 4), (0, 6192, 24, 0, 0, 3096, 12, 4, 1), 0)]), hostbuf=GPUBuffer(shape=(128, 768, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 3, 3, 3, 4), views=[View((1, 64, 128, 8, 4, 3, 3, 3, 4), (0, 0, 0, 432, 4, 144, 16, 48, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 108, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 8, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(32,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
op3 = LazyOp(UnaryOps.RELU, (op2,), None)
buf3 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
buf4 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
op4 = LazyOp(UnaryOps.EXP, (op2,), None)
op5 = LazyOp(BinaryOps.SUB, (buf4,op4,), None)
op6 = LazyOp(UnaryOps.RELU, (op5,), None)
op7 = LazyOp(BinaryOps.MUL, (buf3,op6,), None)
op8 = LazyOp(BinaryOps.SUB, (op3,op7,), None)
ast = LazyOp(MovementOps.RESHAPE, (op8,), (64, 1024, 4))
elif getenv("OP", 0) == 2:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 3, 3), views=[View((1, 66, 130, 32, 1), (262144, 4096, 32, 1, 1), -4128), ZeroView((1, 64, 128, 32, 1), ((0, 1), (-1, 65), (-1, 129), (0, 32), (0, 1))), View((1, 64, 128, 8, 4, 1, 1, 3, 3), (266240, 4160, 32, 4, 1, 12480, 12480, 4160, 32), 0)]), hostbuf=GPUBuffer(shape=(64, 1024, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 3, 3), views=[View((1, 64, 128, 8, 4, 1, 1, 3, 3), (0, 0, 0, 36, 1, 0, 0, 12, 4), 0)]), hostbuf=GPUBuffer(shape=(8, 9, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 8, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(32,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
op3 = LazyOp(UnaryOps.RELU, (op2,), None)
buf3 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
buf4 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 8, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 8, 4, 1, 1, 1, 1), (0, 0, 0, 0, 0, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.], dtype=np.float32)))
op4 = LazyOp(UnaryOps.EXP, (op2,), None)
op5 = LazyOp(BinaryOps.SUB, (buf4,op4,), None)
op6 = LazyOp(UnaryOps.RELU, (op5,), None)
op7 = LazyOp(BinaryOps.MUL, (buf3,op6,), None)
op8 = LazyOp(BinaryOps.SUB, (op3,op7,), None)
ast = LazyOp(MovementOps.RESHAPE, (op8,), (64, 1024, 4))
elif getenv("OP", 0) == 3:
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 8, 4), views=[View((1, 64, 128, 4, 4, 1, 1, 8, 4), (0, 4096, 32, 0, 0, 0, 0, 4, 1), 0)]), hostbuf=GPUBuffer(shape=(64, 1024, 4), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 8, 4), views=[View((1, 64, 128, 4, 4, 1, 1, 8, 4), (0, 0, 0, 128, 4, 0, 0, 16, 1), 0)]), hostbuf=GPUBuffer(shape=(4, 32, 4), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 64, 128, 4, 4, 1, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(1, 64, 128, 4, 4, 1, 1, 1, 1), views=[View((1, 64, 128, 4, 4, 1, 1, 1, 1), (0, 0, 0, 4, 1, 1, 1, 1, 1), 0)]), hostbuf=GPUBuffer(shape=(16,), force_create=True))
op2 = LazyOp(BinaryOps.ADD, (op1,buf2,), None)
ast = LazyOp(MovementOps.RESHAPE, (op2,), (64, 512, 4))
elif getenv("REDUCE", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(32, 8, 112, 112), views=[View((32, 8, 112, 112), (12544, 401408, 112, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 32, 112, 112), force_create=True))
op0 = LazyOp(ReduceOps.SUM, (buf0,), (32, 1, 1, 1))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 1, 1), views=[View((32, 1, 1, 1), (0, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([9.964923e-06], dtype=np.float32)))
op1 = LazyOp(BinaryOps.MUL, (op0,buf1,), None)
ast = LazyOp(MovementOps.RESHAPE, (op1,), (1, 32, 1, 1))
elif getenv("CONVW", 0):
# re_S64_128_3_3
buf0 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 128, 3, 3, 512, 32, 32), views=[View((64, 512, 34, 34), (1024, 65536, 32, 1), -33), ZeroView((64, 512, 32, 32), ((0, 64), (0, 512), (-1, 33), (-1, 33))), View((64, 1, 128, 3, 3, 512, 32, 32), (591872, 591872, 0, 34, 1, 1156, 34, 1), 0)]), hostbuf=GPUBuffer(shape=(512, 64, 32, 32), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 128, 3, 3, 512, 32, 32), views=[View((64, 1, 128, 3, 3, 512, 32, 32), (0, 0, 1024, 0, 0, 131072, 32, 1), 0)]), hostbuf=GPUBuffer(shape=(512, 128, 32, 32), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (64, 1, 128, 3, 3, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (64, 128, 3, 3))
ii = []
#ii.append((Interventions.REDUCE, (6, 32)))
#ii.append((Interventions.UPCAST, (3, 3)))
#ii.append((Interventions.UPCAST, (2, 3)))
#ii.append((Interventions.UPCAST, (3, 32)))
#ii.append((Interventions.UPCAST, (0, 2)))
#ii.append((Interventions.UPCAST, (0, 8)))
#ii.append((Interventions.SWAP, (1, 3)))
#ii.append((Interventions.UPCAST, (2, 3)))
#ii.append((Interventions.UPCAST, (1, 128)))
search(ast, ii)
#one(ast, ii)
#one(ast, [(Interventions.SWAP, (1, 3))])
#one(ast, [(Interventions.UPCAST, (0, 8)), (Interventions.SWAP, (1, 3))])
#one(ast, [(Interventions.UPCAST, (0, 8)), (Interventions.SWAP, (1, 3)), (Interventions.UPCAST, (6, 8))])
exit(0)
elif getenv("BC", 0):
# big conv
buf0 = GPUBuffer(shape=ShapeTracker(shape=(8, 1, 32, 112, 112, 3, 3, 3), views=[View((8, 3, 225, 225), (150528, 50176, 224, 1), 0), ZeroView((8, 3, 224, 224), ((0, 8), (0, 3), (0, 225), (0, 225))), View((8, 1, 32, 112, 112, 3, 3, 3), (151875, 151875, 0, 450, 2, 50625, 225, 1), 0)]), hostbuf=GPUBuffer(shape=(8, 3, 224, 224), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(8, 1, 32, 112, 112, 3, 3, 3), views=[View((8, 1, 32, 112, 112, 3, 3, 3), (0, 0, 27, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 3, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (8, 1, 32, 112, 112, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (8, 32, 112, 112))
elif getenv("SIMPLE_REDUCE", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(64, 512, 32, 32), views=[View((64, 512, 32, 32), (524288, 1024, 32, 1), 0)]), hostbuf=GPUBuffer(shape=(64, 512, 32, 32), force_create=True))
op0 = LazyOp(ReduceOps.SUM, (buf0,), (64, 1, 1, 1))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 1, 1), views=[View((64, 1, 1, 1), (0, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([1.9073486e-06], dtype=np.float32)))
op1 = LazyOp(BinaryOps.MUL, (op0,buf1,), None)
ast = LazyOp(MovementOps.RESHAPE, (op1,), (1, 64, 1, 1))
elif getenv("GEMM", 0):
N = 768
buf0 = GPUBuffer(shape=ShapeTracker(shape=(1, 1, N, N, 1, 1, 1, N), views=[View((1, N, N, 1), (0, 1, N, 0), 0), View((1, 1, N, N, 1, 1, 1, N), (0, 0, 0, 1, 0, 0, 0, N), 0)]), hostbuf=GPUBuffer(shape=(N, N), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(1, 1, N, N, 1, 1, 1, N), views=[View((1, 1, N, N, 1, 1, 1, N), (0, 0, 1, 0, 0, 0, 0, N), 0)]), hostbuf=GPUBuffer(shape=(N, N), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (1, 1, N, N, 1, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (N, N))
ii = []
ii.append((Interventions.SHIFT, (1, 8, False)))
ii.append((Interventions.SHIFT, (1, 8, False)))
#ii.append((Interventions.UPCAST, (1, 4)))
#ii.append((Interventions.UPCAST, (0, 4)))
one(ast, ii, local_override=[8,8,1])
#search(ast, ii) #, depth=0)
exit(0)
elif getenv("FASTCONV", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 32, 32, 32, 64, 3, 3), views=[View((32, 1, 32, 32, 32, 64, 3, 3), (73984, 73984, 0, 34, 1, 1156, 34, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 64, 34, 34), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(32, 1, 32, 32, 32, 64, 3, 3), views=[View((32, 1, 32, 32, 32, 64, 3, 3), (0, 0, 576, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(32, 64, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (32, 1, 32, 32, 32, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (32, 32, 32, 32))
elif getenv("BROKEN", 0):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 1, 1), views=[View((64, 1, 1, 1), (1, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(64,), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(64, 5, 32, 32), views=[View((64, 5, 32, 32), (5120, 1024, 32, 1), 0)]), hostbuf=GPUBuffer(shape=(64, 5, 32, 32), force_create=True))
op0 = LazyOp(ReduceOps.SUM, (buf1,), (64, 1, 1, 1))
buf2 = GPUBuffer(shape=ShapeTracker(shape=(64, 1, 1, 1), views=[View((64, 1, 1, 1), (0, 0, 0, 0), 0)]), hostbuf=GPUBuffer(shape=(1,), backing=np.array([0.001], dtype=np.float32)))
op1 = LazyOp(BinaryOps.MUL, (op0,buf2,), None)
op2 = LazyOp(BinaryOps.SUB, (buf0,op1,), None)
ast = LazyOp(MovementOps.RESHAPE, (op2,), (64,))
elif getenv("BROKEN3"):
buf0 = GPUBuffer(shape=ShapeTracker(shape=(5, 1, 128, 16, 16, 128, 3, 3), views=[View((5, 128, 18, 18), (32768, 256, 16, 1), -17), ZeroView((5, 128, 16, 16), ((0, 5), (0, 128), (-1, 17), (-1, 17))), View((5, 1, 128, 16, 16, 128, 3, 3), (41472, 41472, 0, 18, 1, 324, 18, 1), 0)]), hostbuf=GPUBuffer(shape=(5, 128, 16, 16), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(5, 1, 128, 16, 16, 128, 3, 3), views=[View((5, 1, 128, 16, 16, 128, 3, 3), (0, 0, 1152, 0, 0, 9, 3, 1), 0)]), hostbuf=GPUBuffer(shape=(128, 128, 3, 3), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (5, 1, 128, 16, 16, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (5, 128, 16, 16))
else:
# reduce
buf0 = GPUBuffer(shape=ShapeTracker(shape=(3, 1, 32, 3, 3, 32, 112, 112), views=[View((3, 32, 225, 225), (50176, 150528, 224, 1), 0), ZeroView((3, 32, 224, 224), ((0, 3), (0, 32), (0, 225), (0, 225))), View((3, 1, 32, 3, 3, 32, 112, 112), (1620000, 1620000, 0, 225, 1, 50625, 450, 2), 0)]), hostbuf=GPUBuffer(shape=(32, 3, 224, 224), force_create=True))
buf1 = GPUBuffer(shape=ShapeTracker(shape=(3, 1, 32, 3, 3, 32, 112, 112), views=[View((3, 1, 32, 3, 3, 32, 112, 112), (0, 12845056, 401408, 0, 0, 12544, 112, 1), 0)]), hostbuf=GPUBuffer(shape=(1, 1, 32, 1, 1, 32, 112, 112), force_create=True))
op0 = LazyOp(BinaryOps.MUL, (buf0,buf1,), None)
op1 = LazyOp(ReduceOps.SUM, (op0,), (3, 1, 32, 3, 3, 1, 1, 1))
ast = LazyOp(MovementOps.RESHAPE, (op1,), (3, 32, 3, 3))
search(ast)
#test_correctness(ast)