forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugment.py
41 lines (38 loc) · 1.4 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import numpy as np
from PIL import Image
import os
import sys
sys.path.append(os.getcwd())
sys.path.append(os.path.join(os.getcwd(), 'test'))
from datasets import fetch_mnist
from tqdm import trange
def augment_img(X, rotate=10, px=3):
Xaug = np.zeros_like(X)
for i in trange(len(X)):
im = Image.fromarray(X[i])
im = im.rotate(np.random.randint(-rotate,rotate), resample=Image.BICUBIC)
w, h = X.shape[1:]
#upper left, lower left, lower right, upper right
quad = np.random.randint(-px,px,size=(8)) + np.array([0,0,0,h,w,h,w,0])
im = im.transform((w, h), Image.QUAD, quad, resample=Image.BICUBIC)
Xaug[i] = im
return Xaug
if __name__ == "__main__":
import matplotlib.pyplot as plt
X_train, Y_train, X_test, Y_test = fetch_mnist()
X_train = X_train.reshape(-1, 28, 28).astype(np.uint8)
X_test = X_test.reshape(-1, 28, 28).astype(np.uint8)
X = np.vstack([X_train[:1]]*10+[X_train[1:2]]*10)
fig, a = plt.subplots(2,len(X))
Xaug = augment_img(X)
for i in range(len(X)):
a[0][i].imshow(X[i], cmap='gray')
a[1][i].imshow(Xaug[i],cmap='gray')
a[0][i].axis('off')
a[1][i].axis('off')
plt.show()
#create some nice gifs for doc?!
for i in range(10):
im = Image.fromarray(X_train[7353+i])
im_aug = [Image.fromarray(x) for x in augment_img(np.array([X_train[7353+i]]*100))]
im.save(f"aug{i}.gif", save_all=True, append_images=im_aug, duration=100, loop=0)