-
Notifications
You must be signed in to change notification settings - Fork 6
/
classification.py
354 lines (277 loc) · 13.8 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
"""HuggingFace-compatible classification and regression models including
pytorch-lightning models.
"""
__all__ = ("BypassNet", "ClassificationHead", "ClassifierLitModel",
"GPT2ForSequenceClassification", "RegressorLitModel",
"SequenceClassifierOutput")
from dataclasses import dataclass
from typing import List, Optional
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics import AUROC, AveragePrecision
from transformers import GPT2Model, GPT2PreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
from transformers.adapters.model_mixin import ModelWithHeadsAdaptersMixin
@dataclass
class SequenceClassifierOutput(SequenceClassifierOutputWithPast):
target: Optional[torch.LongTensor] = None
class GPT2ForSequenceClassification(ModelWithHeadsAdaptersMixin, GPT2PreTrainedModel):
"""HuggingFace-compatible single- and multi-output (-task) classification model.
`config` must be a `GPT2Config` instance with additional `num_tasks` and `num_labels`
properties. For multi-task classification, the output is Bypass network with the
reduction factor = `config.n_embd // config.n_head`.
"""
_keys_to_ignore_on_load_missing = [
r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight", r"output\..*"]
def __init__(self, config):
super().__init__(config)
self.num_tasks = config.num_tasks
self.num_labels = config.num_labels
self.transformer = GPT2Model(config)
if self.num_tasks > 1:
self.output = BypassNet(
config.n_embd, config.n_embd // config.n_head,
config.num_tasks, config.num_labels,
config.embd_pdrop)
else:
self.output = ClassificationHead(
config.n_embd, config.n_embd // config.n_head,
config.num_labels, config.embd_pdrop)
self.init_weights()
def forward(self, input_ids=None, past_key_values=None, attention_mask=None,
token_type_ids=None, position_ids=None, head_mask=None,
inputs_embeds=None, labels=None, use_cache=None, output_attentions=None,
output_hidden_states=None, return_dict=None, adapter_names=None,
label_mask=None):
return_dict = return_dict or self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids, past_key_values=past_key_values, attention_mask=attention_mask,
token_type_ids=token_type_ids, position_ids=position_ids,
head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states, return_dict=return_dict)
hidden_states = transformer_outputs[0]
if input_ids is not None:
batch_size, sequence_length = input_ids.shape[:2]
else:
batch_size, sequence_length = inputs_embeds.shape[:2]
assert self.config.pad_token_id is not None or batch_size == 1, \
"Cannot handle batch sizes > 1 if no padding token is defined."
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = torch.ne(
input_ids, self.config.pad_token_id).sum(-1) - 1
else:
sequence_lengths = -1
if self.num_tasks == 1:
logits = self.output(hidden_states)[range(batch_size), sequence_lengths]
else:
logits = self.output(hidden_states, batch_size, sequence_lengths)
loss = None
if labels is not None:
if self.num_labels == 2:
if label_mask is not None:
nonempty_tasks = (label_mask == 1).view(-1)
nonempty_logits = logits.view(-1, self.num_labels)[nonempty_tasks, :]
nonempty_labels = labels.view(-1)[nonempty_tasks]
else:
nonempty_logits = logits.view(-1, self.num_labels)
nonempty_labels = labels.view(-1)
if len(labels.size()) == 1:
labels = labels.reshape(1, -1)
loss = F.cross_entropy(nonempty_logits, nonempty_labels)
elif self.num_labels == 1:
loss = F.mse_loss(logits.view(-1), labels.view(-1))
else:
raise NotImplementedError(
"Only binary classification and regression supported.")
if self.num_tasks > 1:
logits = logits.transpose(1, 2)
if labels is not None and self.num_labels == 2 and self.num_tasks == 1:
if label_mask is not None:
labels = labels.view(-1)
else:
labels = nonempty_labels
if not return_dict:
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, target=labels,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions)
class BypassNet(nn.Module):
"""Bypass multi-task network from MoleculeNet project [Wu et al., 2018].
"""
def __init__(self, hidden_size: int, intermediate_size: int,
num_tasks: int, num_labels: int = 2,
dropout: float = 0.2, use_bias: bool = False):
super().__init__()
self.independent = nn.ModuleList([
ClassificationHead(hidden_size, intermediate_size,
num_labels, dropout, use_bias)
for _ in range(num_tasks)])
self.shared = ClassificationHead(hidden_size, intermediate_size,
num_labels, dropout, use_bias)
def forward(self, hidden_states, batch_size, sequence_lengths):
logits_list: List[torch.Tensor] = []
for layer in self.independent:
logits_list.append(layer(hidden_states))
shared_logits: torch.Tensor = self.shared(hidden_states)
for i in range(len(logits_list)):
logits_list[i] = (logits_list[i] + shared_logits)[range(batch_size),
sequence_lengths]
return torch.stack(logits_list, dim=1)
class ClassificationHead(nn.Module):
"""Two-layer feed-forward network with GELU activation and intermediate dropout.
"""
def __init__(self, hidden_size: int, intermediate_size: int,
num_labels: int, dropout: float = 0.0, use_bias: bool = False):
super().__init__()
self.dense = nn.Linear(hidden_size, intermediate_size, bias=use_bias)
self.act = nn.GELU()
self.dropout = nn.Dropout(dropout)
self.out_proj = nn.Linear(intermediate_size, num_labels, bias=use_bias)
def forward(self, x, *args, **kwargs):
x = self.dense(x)
x = self.act(x)
x = self.dropout(x)
return self.out_proj(x)
class ClassifierLitModel(pl.LightningModule):
"""Pytorch-lightning module for single- or multi-task classification. Trains GPT2
model using `AdamW` optimizer with exponential LR scheduler. Evaluates valid and
test data on AUC-ROC and AUC-PRC.
Args:
transformer (`GPT2Model`): (Pretrained) HuggingFace GPT2 model.
num_tasks (int): The number of classification tasks.
has_empty_labels (bool)
batch_size (int)
learning_rate (float)
scheduler_lambda (float)
scheduler_step (int)
weight_decay (float)
"""
def __init__(self, transformer: GPT2Model, num_tasks: int, has_empty_labels: bool,
batch_size: int, learning_rate: float, scheduler_lambda: float,
scheduler_step: int, weight_decay: float, *args, **kwargs):
super().__init__()
self.save_hyperparameters(ignore=("transformer", "num_tasks", "has_empty_labels"))
self.transformer = transformer
self.num_tasks = num_tasks
def get_metrics(metric_cls):
return [metric_cls(num_classes=2) for _ in range(num_tasks)]
if has_empty_labels:
self.train_roc = get_metrics(AUROC)
self.val_roc = get_metrics(AUROC)
self.test_roc = get_metrics(AUROC)
self.train_prc = get_metrics(AveragePrecision)
self.val_prc = get_metrics(AveragePrecision)
self.test_prc = get_metrics(AveragePrecision)
self.step = self._step_empty
self.epoch_end = self._epoch_end_empty
else:
self.train_roc = AUROC(num_classes=2)
self.val_roc = AUROC(num_classes=2)
self.test_roc = AUROC(num_classes=2)
self.train_prc = AveragePrecision(num_classes=2)
self.val_prc = AveragePrecision(num_classes=2)
self.test_prc = AveragePrecision(num_classes=2)
self.step = self._step_nonempty
self.epoch_end = self._epoch_end_nonempty
def forward(self, *args, **kwargs):
return self.transformer(*args, **kwargs)
def _step_empty(self, batch, batch_idx, roc, prc):
outputs = self(**batch)
if self.num_tasks == 1:
outputs["target"] = outputs["target"][:, None]
outputs["logits"] = outputs["logits"][:, :, None]
for task_id in range(self.num_tasks):
target = outputs["target"][:, task_id]
nonempty_entries = target != -1
target = target[nonempty_entries]
if target.unique().size(0) > 1:
logits = outputs["logits"][:, :, task_id][nonempty_entries]
roc[task_id](logits, target)
prc[task_id](logits, target)
return {"loss": outputs["loss"]}
def _step_nonempty(self, batch, batch_idx, roc, prc):
outputs = self(**batch)
logits, target = outputs["logits"], outputs["target"]
if target.unique().size(0) > 1:
roc(logits, target)
prc(logits, target)
return {"loss": outputs["loss"]}
def _epoch_end_empty(self, outputs_ignored, roc, prc, prefix):
mean_roc = sum(a.compute() for a in roc) / self.num_tasks
self.log(f"{prefix}_roc", mean_roc, on_step=False, on_epoch=True, prog_bar=True)
mean_prc = sum(p.compute() for p in prc) / self.num_tasks
self.log(f"{prefix}_prc", mean_prc, on_step=False, on_epoch=True, prog_bar=True)
def _epoch_end_nonempty(self, outputs, roc, prc, prefix):
self.log(f"{prefix}_roc", roc.compute(),
on_step=False, on_epoch=True, prog_bar=True)
self.log(f"{prefix}_prc", prc.compute(),
on_step=False, on_epoch=True, prog_bar=True)
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx, self.train_roc, self.train_prc)
def training_epoch_end(self, outputs):
self.epoch_end(outputs, self.train_roc, self.train_prc, "train")
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx, self.val_roc, self.val_prc)
def validation_epoch_end(self, outputs):
self.epoch_end(outputs, self.val_roc, self.val_prc, "val")
def test_step(self, batch, batch_idx):
self.step(batch, batch_idx, self.test_roc, self.test_prc)
def test_epoch_end(self, outputs):
self.epoch_end(outputs, self.test_roc, self.test_prc, "test")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parameters(), lr=self.hparams.learning_rate,
weight_decay=self.hparams.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, self.hparams.scheduler_lambda)
return {"optimizer": optimizer,
"lr_scheduler": {"scheduler": lr_scheduler,
"interval": "step",
"frequency": self.hparams.scheduler_step}}
class RegressorLitModel(pl.LightningModule):
def __init__(self, transformer: GPT2Model,
batch_size: int, learning_rate: float, scheduler_lambda: float,
scheduler_step: int, weight_decay: float, *args, **kwargs):
super().__init__()
self.save_hyperparameters(ignore="transformer")
self.transformer = transformer
def forward(self, *args, **kwargs):
return self.transformer(*args, **kwargs)
def step(self, batch, batch_idx):
outputs = self(**batch)
rmse_loss = torch.sqrt(outputs["loss"])
return {"loss": rmse_loss}
def epoch_end(self, outputs, prefix):
mean_rmse = torch.mean(torch.tensor([out["loss"] for out in outputs]))
self.log(f"{prefix}_rmse", mean_rmse, on_step=False, on_epoch=True, prog_bar=True)
def training_step(self, batch, batch_idx):
return self.step(batch, batch_idx)
def training_epoch_end(self, outputs):
self.epoch_end(outputs, "train")
def validation_step(self, batch, batch_idx):
return self.step(batch, batch_idx)
def validation_epoch_end(self, outputs):
self.epoch_end(outputs, "val")
def test_step(self, batch, batch_idx):
return self.step(batch, batch_idx)
def test_epoch_end(self, outputs):
self.epoch_end(outputs, "test")
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
self.parameters(), lr=self.hparams.learning_rate,
weight_decay=self.hparams.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, self.hparams.scheduler_lambda)
return {"optimizer": optimizer,
"lr_scheduler": {"scheduler": lr_scheduler,
"interval": "step",
"frequency": self.hparams.scheduler_step}}