forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataflow.py
564 lines (434 loc) · 18.8 KB
/
dataflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"""Data-flow analyses."""
from abc import abstractmethod
from typing import Dict, Tuple, List, Set, TypeVar, Iterator, Generic, Optional, Iterable, Union
from mypyc.ir.ops import (
Value, ControlOp,
BasicBlock, OpVisitor, Assign, AssignMulti, Integer, LoadErrorValue, RegisterOp, Goto, Branch,
Return, Call, Box, Unbox, Cast, Op, Unreachable, TupleGet, TupleSet, GetAttr, SetAttr,
LoadLiteral, LoadStatic, InitStatic, MethodCall, RaiseStandardError, CallC, LoadGlobal,
Truncate, IntOp, LoadMem, GetElementPtr, LoadAddress, ComparisonOp, SetMem, KeepAlive
)
from mypyc.ir.func_ir import all_values
class CFG:
"""Control-flow graph.
Node 0 is always assumed to be the entry point. There must be a
non-empty set of exits.
"""
def __init__(self,
succ: Dict[BasicBlock, List[BasicBlock]],
pred: Dict[BasicBlock, List[BasicBlock]],
exits: Set[BasicBlock]) -> None:
assert exits
self.succ = succ
self.pred = pred
self.exits = exits
def __str__(self) -> str:
lines = []
lines.append('exits: %s' % sorted(self.exits, key=lambda e: e.label))
lines.append('succ: %s' % self.succ)
lines.append('pred: %s' % self.pred)
return '\n'.join(lines)
def get_cfg(blocks: List[BasicBlock]) -> CFG:
"""Calculate basic block control-flow graph.
The result is a dictionary like this:
basic block index -> (successors blocks, predecesssor blocks)
"""
succ_map = {}
pred_map: Dict[BasicBlock, List[BasicBlock]] = {}
exits = set()
for block in blocks:
assert not any(isinstance(op, ControlOp) for op in block.ops[:-1]), (
"Control-flow ops must be at the end of blocks")
succ = list(block.terminator.targets())
if not succ:
exits.add(block)
# Errors can occur anywhere inside a block, which means that
# we can't assume that the entire block has executed before
# jumping to the error handler. In our CFG construction, we
# model this as saying that a block can jump to its error
# handler or the error handlers of any of its normal
# successors (to represent an error before that next block
# completes). This works well for analyses like "must
# defined", where it implies that registers assigned in a
# block may be undefined in its error handler, but is in
# general not a precise representation of reality; any
# analyses that require more fidelity must wait until after
# exception insertion.
for error_point in [block] + succ:
if error_point.error_handler:
succ.append(error_point.error_handler)
succ_map[block] = succ
pred_map[block] = []
for prev, nxt in succ_map.items():
for label in nxt:
pred_map[label].append(prev)
return CFG(succ_map, pred_map, exits)
def get_real_target(label: BasicBlock) -> BasicBlock:
if len(label.ops) == 1 and isinstance(label.ops[-1], Goto):
label = label.ops[-1].label
return label
def cleanup_cfg(blocks: List[BasicBlock]) -> None:
"""Cleanup the control flow graph.
This eliminates obviously dead basic blocks and eliminates blocks that contain
nothing but a single jump.
There is a lot more that could be done.
"""
changed = True
while changed:
# First collapse any jumps to basic block that only contain a goto
for block in blocks:
for i, tgt in enumerate(block.terminator.targets()):
block.terminator.set_target(i, get_real_target(tgt))
# Then delete any blocks that have no predecessors
changed = False
cfg = get_cfg(blocks)
orig_blocks = blocks[:]
blocks.clear()
for i, block in enumerate(orig_blocks):
if i == 0 or cfg.pred[block]:
blocks.append(block)
else:
changed = True
T = TypeVar('T')
AnalysisDict = Dict[Tuple[BasicBlock, int], Set[T]]
class AnalysisResult(Generic[T]):
def __init__(self, before: 'AnalysisDict[T]', after: 'AnalysisDict[T]') -> None:
self.before = before
self.after = after
def __str__(self) -> str:
return 'before: %s\nafter: %s\n' % (self.before, self.after)
GenAndKill = Tuple[Set[Value], Set[Value]]
class BaseAnalysisVisitor(OpVisitor[GenAndKill]):
def visit_goto(self, op: Goto) -> GenAndKill:
return set(), set()
@abstractmethod
def visit_register_op(self, op: RegisterOp) -> GenAndKill:
raise NotImplementedError
@abstractmethod
def visit_assign(self, op: Assign) -> GenAndKill:
raise NotImplementedError
@abstractmethod
def visit_assign_multi(self, op: AssignMulti) -> GenAndKill:
raise NotImplementedError
@abstractmethod
def visit_set_mem(self, op: SetMem) -> GenAndKill:
raise NotImplementedError
def visit_call(self, op: Call) -> GenAndKill:
return self.visit_register_op(op)
def visit_method_call(self, op: MethodCall) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_error_value(self, op: LoadErrorValue) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_literal(self, op: LoadLiteral) -> GenAndKill:
return self.visit_register_op(op)
def visit_get_attr(self, op: GetAttr) -> GenAndKill:
return self.visit_register_op(op)
def visit_set_attr(self, op: SetAttr) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_static(self, op: LoadStatic) -> GenAndKill:
return self.visit_register_op(op)
def visit_init_static(self, op: InitStatic) -> GenAndKill:
return self.visit_register_op(op)
def visit_tuple_get(self, op: TupleGet) -> GenAndKill:
return self.visit_register_op(op)
def visit_tuple_set(self, op: TupleSet) -> GenAndKill:
return self.visit_register_op(op)
def visit_box(self, op: Box) -> GenAndKill:
return self.visit_register_op(op)
def visit_unbox(self, op: Unbox) -> GenAndKill:
return self.visit_register_op(op)
def visit_cast(self, op: Cast) -> GenAndKill:
return self.visit_register_op(op)
def visit_raise_standard_error(self, op: RaiseStandardError) -> GenAndKill:
return self.visit_register_op(op)
def visit_call_c(self, op: CallC) -> GenAndKill:
return self.visit_register_op(op)
def visit_truncate(self, op: Truncate) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_global(self, op: LoadGlobal) -> GenAndKill:
return self.visit_register_op(op)
def visit_int_op(self, op: IntOp) -> GenAndKill:
return self.visit_register_op(op)
def visit_comparison_op(self, op: ComparisonOp) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_mem(self, op: LoadMem) -> GenAndKill:
return self.visit_register_op(op)
def visit_get_element_ptr(self, op: GetElementPtr) -> GenAndKill:
return self.visit_register_op(op)
def visit_load_address(self, op: LoadAddress) -> GenAndKill:
return self.visit_register_op(op)
def visit_keep_alive(self, op: KeepAlive) -> GenAndKill:
return self.visit_register_op(op)
class DefinedVisitor(BaseAnalysisVisitor):
"""Visitor for finding defined registers.
Note that this only deals with registers and not temporaries, on
the assumption that we never access temporaries when they might be
undefined.
If strict_errors is True, then we regard any use of LoadErrorValue
as making a register undefined. Otherwise we only do if
`undefines` is set on the error value.
This lets us only consider the things we care about during
uninitialized variable checking while capturing all possibly
undefined things for refcounting.
"""
def __init__(self, strict_errors: bool = False) -> None:
self.strict_errors = strict_errors
def visit_branch(self, op: Branch) -> GenAndKill:
return set(), set()
def visit_return(self, op: Return) -> GenAndKill:
return set(), set()
def visit_unreachable(self, op: Unreachable) -> GenAndKill:
return set(), set()
def visit_register_op(self, op: RegisterOp) -> GenAndKill:
return set(), set()
def visit_assign(self, op: Assign) -> GenAndKill:
# Loading an error value may undefine the register.
if (isinstance(op.src, LoadErrorValue)
and (op.src.undefines or self.strict_errors)):
return set(), {op.dest}
else:
return {op.dest}, set()
def visit_assign_multi(self, op: AssignMulti) -> GenAndKill:
# Array registers are special and we don't track the definedness of them.
return set(), set()
def visit_set_mem(self, op: SetMem) -> GenAndKill:
return set(), set()
def analyze_maybe_defined_regs(blocks: List[BasicBlock],
cfg: CFG,
initial_defined: Set[Value]) -> AnalysisResult[Value]:
"""Calculate potentially defined registers at each CFG location.
A register is defined if it has a value along some path from the initial location.
"""
return run_analysis(blocks=blocks,
cfg=cfg,
gen_and_kill=DefinedVisitor(),
initial=initial_defined,
backward=False,
kind=MAYBE_ANALYSIS)
def analyze_must_defined_regs(
blocks: List[BasicBlock],
cfg: CFG,
initial_defined: Set[Value],
regs: Iterable[Value],
strict_errors: bool = False) -> AnalysisResult[Value]:
"""Calculate always defined registers at each CFG location.
This analysis can work before exception insertion, since it is a
sound assumption that registers defined in a block might not be
initialized in its error handler.
A register is defined if it has a value along all paths from the
initial location.
"""
return run_analysis(blocks=blocks,
cfg=cfg,
gen_and_kill=DefinedVisitor(strict_errors=strict_errors),
initial=initial_defined,
backward=False,
kind=MUST_ANALYSIS,
universe=set(regs))
class BorrowedArgumentsVisitor(BaseAnalysisVisitor):
def __init__(self, args: Set[Value]) -> None:
self.args = args
def visit_branch(self, op: Branch) -> GenAndKill:
return set(), set()
def visit_return(self, op: Return) -> GenAndKill:
return set(), set()
def visit_unreachable(self, op: Unreachable) -> GenAndKill:
return set(), set()
def visit_register_op(self, op: RegisterOp) -> GenAndKill:
return set(), set()
def visit_assign(self, op: Assign) -> GenAndKill:
if op.dest in self.args:
return set(), {op.dest}
return set(), set()
def visit_assign_multi(self, op: AssignMulti) -> GenAndKill:
return set(), set()
def visit_set_mem(self, op: SetMem) -> GenAndKill:
return set(), set()
def analyze_borrowed_arguments(
blocks: List[BasicBlock],
cfg: CFG,
borrowed: Set[Value]) -> AnalysisResult[Value]:
"""Calculate arguments that can use references borrowed from the caller.
When assigning to an argument, it no longer is borrowed.
"""
return run_analysis(blocks=blocks,
cfg=cfg,
gen_and_kill=BorrowedArgumentsVisitor(borrowed),
initial=borrowed,
backward=False,
kind=MUST_ANALYSIS,
universe=borrowed)
class UndefinedVisitor(BaseAnalysisVisitor):
def visit_branch(self, op: Branch) -> GenAndKill:
return set(), set()
def visit_return(self, op: Return) -> GenAndKill:
return set(), set()
def visit_unreachable(self, op: Unreachable) -> GenAndKill:
return set(), set()
def visit_register_op(self, op: RegisterOp) -> GenAndKill:
return set(), {op} if not op.is_void else set()
def visit_assign(self, op: Assign) -> GenAndKill:
return set(), {op.dest}
def visit_assign_multi(self, op: AssignMulti) -> GenAndKill:
return set(), {op.dest}
def visit_set_mem(self, op: SetMem) -> GenAndKill:
return set(), set()
def analyze_undefined_regs(blocks: List[BasicBlock],
cfg: CFG,
initial_defined: Set[Value]) -> AnalysisResult[Value]:
"""Calculate potentially undefined registers at each CFG location.
A register is undefined if there is some path from initial block
where it has an undefined value.
Function arguments are assumed to be always defined.
"""
initial_undefined = set(all_values([], blocks)) - initial_defined
return run_analysis(blocks=blocks,
cfg=cfg,
gen_and_kill=UndefinedVisitor(),
initial=initial_undefined,
backward=False,
kind=MAYBE_ANALYSIS)
def non_trivial_sources(op: Op) -> Set[Value]:
result = set()
for source in op.sources():
if not isinstance(source, Integer):
result.add(source)
return result
class LivenessVisitor(BaseAnalysisVisitor):
def visit_branch(self, op: Branch) -> GenAndKill:
return non_trivial_sources(op), set()
def visit_return(self, op: Return) -> GenAndKill:
if not isinstance(op.value, Integer):
return {op.value}, set()
else:
return set(), set()
def visit_unreachable(self, op: Unreachable) -> GenAndKill:
return set(), set()
def visit_register_op(self, op: RegisterOp) -> GenAndKill:
gen = non_trivial_sources(op)
if not op.is_void:
return gen, {op}
else:
return gen, set()
def visit_assign(self, op: Assign) -> GenAndKill:
return non_trivial_sources(op), {op.dest}
def visit_assign_multi(self, op: AssignMulti) -> GenAndKill:
return non_trivial_sources(op), {op.dest}
def visit_set_mem(self, op: SetMem) -> GenAndKill:
return non_trivial_sources(op), set()
def analyze_live_regs(blocks: List[BasicBlock],
cfg: CFG) -> AnalysisResult[Value]:
"""Calculate live registers at each CFG location.
A register is live at a location if it can be read along some CFG path starting
from the location.
"""
return run_analysis(blocks=blocks,
cfg=cfg,
gen_and_kill=LivenessVisitor(),
initial=set(),
backward=True,
kind=MAYBE_ANALYSIS)
# Analysis kinds
MUST_ANALYSIS = 0
MAYBE_ANALYSIS = 1
# TODO the return type of this function is too complicated. Abstract it into its
# own class.
def run_analysis(blocks: List[BasicBlock],
cfg: CFG,
gen_and_kill: OpVisitor[Tuple[Set[T], Set[T]]],
initial: Set[T],
kind: int,
backward: bool,
universe: Optional[Set[T]] = None) -> AnalysisResult[T]:
"""Run a general set-based data flow analysis.
Args:
blocks: All basic blocks
cfg: Control-flow graph for the code
gen_and_kill: Implementation of gen and kill functions for each op
initial: Value of analysis for the entry points (for a forward analysis) or the
exit points (for a backward analysis)
kind: MUST_ANALYSIS or MAYBE_ANALYSIS
backward: If False, the analysis is a forward analysis; it's backward otherwise
universe: For a must analysis, the set of all possible values. This is the starting
value for the work list algorithm, which will narrow this down until reaching a
fixed point. For a maybe analysis the iteration always starts from an empty set
and this argument is ignored.
Return analysis results: (before, after)
"""
block_gen = {}
block_kill = {}
# Calculate kill and gen sets for entire basic blocks.
for block in blocks:
gen: Set[T] = set()
kill: Set[T] = set()
ops = block.ops
if backward:
ops = list(reversed(ops))
for op in ops:
opgen, opkill = op.accept(gen_and_kill)
gen = ((gen - opkill) | opgen)
kill = ((kill - opgen) | opkill)
block_gen[block] = gen
block_kill[block] = kill
# Set up initial state for worklist algorithm.
worklist = list(blocks)
if not backward:
worklist = worklist[::-1] # Reverse for a small performance improvement
workset = set(worklist)
before: Dict[BasicBlock, Set[T]] = {}
after: Dict[BasicBlock, Set[T]] = {}
for block in blocks:
if kind == MAYBE_ANALYSIS:
before[block] = set()
after[block] = set()
else:
assert universe is not None, "Universe must be defined for a must analysis"
before[block] = set(universe)
after[block] = set(universe)
if backward:
pred_map = cfg.succ
succ_map = cfg.pred
else:
pred_map = cfg.pred
succ_map = cfg.succ
# Run work list algorithm to generate in and out sets for each basic block.
while worklist:
label = worklist.pop()
workset.remove(label)
if pred_map[label]:
new_before: Union[Set[T], None] = None
for pred in pred_map[label]:
if new_before is None:
new_before = set(after[pred])
elif kind == MAYBE_ANALYSIS:
new_before |= after[pred]
else:
new_before &= after[pred]
assert new_before is not None
else:
new_before = set(initial)
before[label] = new_before
new_after = (new_before - block_kill[label]) | block_gen[label]
if new_after != after[label]:
for succ in succ_map[label]:
if succ not in workset:
worklist.append(succ)
workset.add(succ)
after[label] = new_after
# Run algorithm for each basic block to generate opcode-level sets.
op_before: Dict[Tuple[BasicBlock, int], Set[T]] = {}
op_after: Dict[Tuple[BasicBlock, int], Set[T]] = {}
for block in blocks:
label = block
cur = before[label]
ops_enum: Iterator[Tuple[int, Op]] = enumerate(block.ops)
if backward:
ops_enum = reversed(list(ops_enum))
for idx, op in ops_enum:
op_before[label, idx] = cur
opgen, opkill = op.accept(gen_and_kill)
cur = (cur - opkill) | opgen
op_after[label, idx] = cur
if backward:
op_after, op_before = op_before, op_after
return AnalysisResult(op_before, op_after)