forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubtypes.py
1473 lines (1281 loc) · 66.3 KB
/
subtypes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from contextlib import contextmanager
from typing import Any, List, Optional, Callable, Tuple, Iterator, Set, Union, cast, TypeVar
from typing_extensions import Final, TypeAlias as _TypeAlias
from mypy.types import (
Type, AnyType, UnboundType, TypeVisitor, FormalArgument, NoneType,
Instance, TypeVarType, CallableType, TupleType, TypedDictType, UnionType, Overloaded,
ErasedType, PartialType, DeletedType, UninhabitedType, TypeType, is_named_instance,
FunctionLike, TypeOfAny, LiteralType, get_proper_type, TypeAliasType, ParamSpecType,
UnpackType, TUPLE_LIKE_INSTANCE_NAMES,
)
import mypy.applytype
import mypy.constraints
import mypy.typeops
import mypy.sametypes
from mypy.erasetype import erase_type
# Circular import; done in the function instead.
# import mypy.solve
from mypy.nodes import (
FuncBase, Var, Decorator, OverloadedFuncDef, TypeInfo, CONTRAVARIANT, COVARIANT,
)
from mypy.maptype import map_instance_to_supertype
from mypy.expandtype import expand_type_by_instance
from mypy.typestate import TypeState, SubtypeKind
from mypy import state
# Flags for detected protocol members
IS_SETTABLE: Final = 1
IS_CLASSVAR: Final = 2
IS_CLASS_OR_STATIC: Final = 3
TypeParameterChecker: _TypeAlias = Callable[[Type, Type, int], bool]
def check_type_parameter(lefta: Type, righta: Type, variance: int) -> bool:
if variance == COVARIANT:
return is_subtype(lefta, righta)
elif variance == CONTRAVARIANT:
return is_subtype(righta, lefta)
else:
return is_equivalent(lefta, righta)
def ignore_type_parameter(s: Type, t: Type, v: int) -> bool:
return True
def is_subtype(left: Type, right: Type,
*,
ignore_type_params: bool = False,
ignore_pos_arg_names: bool = False,
ignore_declared_variance: bool = False,
ignore_promotions: bool = False) -> bool:
"""Is 'left' subtype of 'right'?
Also consider Any to be a subtype of any type, and vice versa. This
recursively applies to components of composite types (List[int] is subtype
of List[Any], for example).
type_parameter_checker is used to check the type parameters (for example,
A with B in is_subtype(C[A], C[B]). The default checks for subtype relation
between the type arguments (e.g., A and B), taking the variance of the
type var into account.
"""
if TypeState.is_assumed_subtype(left, right):
return True
if (isinstance(left, TypeAliasType) and isinstance(right, TypeAliasType) and
left.is_recursive and right.is_recursive):
# This case requires special care because it may cause infinite recursion.
# Our view on recursive types is known under a fancy name of equirecursive mu-types.
# Roughly this means that a recursive type is defined as an alias where right hand side
# can refer to the type as a whole, for example:
# A = Union[int, Tuple[A, ...]]
# and an alias unrolled once represents the *same type*, in our case all these represent
# the same type:
# A
# Union[int, Tuple[A, ...]]
# Union[int, Tuple[Union[int, Tuple[A, ...]], ...]]
# The algorithm for subtyping is then essentially under the assumption that left <: right,
# check that get_proper_type(left) <: get_proper_type(right). On the example above,
# If we start with:
# A = Union[int, Tuple[A, ...]]
# B = Union[int, Tuple[B, ...]]
# When checking if A <: B we push pair (A, B) onto 'assuming' stack, then when after few
# steps we come back to initial call is_subtype(A, B) and immediately return True.
with pop_on_exit(TypeState._assuming, left, right):
return _is_subtype(left, right,
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions)
return _is_subtype(left, right,
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions)
def _is_subtype(left: Type, right: Type,
*,
ignore_type_params: bool = False,
ignore_pos_arg_names: bool = False,
ignore_declared_variance: bool = False,
ignore_promotions: bool = False) -> bool:
orig_right = right
orig_left = left
left = get_proper_type(left)
right = get_proper_type(right)
if (isinstance(right, AnyType) or isinstance(right, UnboundType)
or isinstance(right, ErasedType)):
return True
elif isinstance(right, UnionType) and not isinstance(left, UnionType):
# Normally, when 'left' is not itself a union, the only way
# 'left' can be a subtype of the union 'right' is if it is a
# subtype of one of the items making up the union.
is_subtype_of_item = any(is_subtype(orig_left, item,
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions)
for item in right.items)
# Recombine rhs literal types, to make an enum type a subtype
# of a union of all enum items as literal types. Only do it if
# the previous check didn't succeed, since recombining can be
# expensive.
# `bool` is a special case, because `bool` is `Literal[True, False]`.
if (not is_subtype_of_item
and isinstance(left, Instance)
and (left.type.is_enum or left.type.fullname == 'builtins.bool')):
right = UnionType(mypy.typeops.try_contracting_literals_in_union(right.items))
is_subtype_of_item = any(is_subtype(orig_left, item,
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions)
for item in right.items)
# However, if 'left' is a type variable T, T might also have
# an upper bound which is itself a union. This case will be
# handled below by the SubtypeVisitor. We have to check both
# possibilities, to handle both cases like T <: Union[T, U]
# and cases like T <: B where B is the upper bound of T and is
# a union. (See #2314.)
if not isinstance(left, TypeVarType):
return is_subtype_of_item
elif is_subtype_of_item:
return True
# otherwise, fall through
return left.accept(SubtypeVisitor(orig_right,
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions))
def is_equivalent(a: Type, b: Type,
*,
ignore_type_params: bool = False,
ignore_pos_arg_names: bool = False
) -> bool:
return (
is_subtype(a, b, ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names)
and is_subtype(b, a, ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names))
class SubtypeVisitor(TypeVisitor[bool]):
def __init__(self, right: Type,
*,
ignore_type_params: bool,
ignore_pos_arg_names: bool = False,
ignore_declared_variance: bool = False,
ignore_promotions: bool = False) -> None:
self.right = get_proper_type(right)
self.orig_right = right
self.ignore_type_params = ignore_type_params
self.ignore_pos_arg_names = ignore_pos_arg_names
self.ignore_declared_variance = ignore_declared_variance
self.ignore_promotions = ignore_promotions
self.check_type_parameter = (ignore_type_parameter if ignore_type_params else
check_type_parameter)
self._subtype_kind = SubtypeVisitor.build_subtype_kind(
ignore_type_params=ignore_type_params,
ignore_pos_arg_names=ignore_pos_arg_names,
ignore_declared_variance=ignore_declared_variance,
ignore_promotions=ignore_promotions)
@staticmethod
def build_subtype_kind(*,
ignore_type_params: bool = False,
ignore_pos_arg_names: bool = False,
ignore_declared_variance: bool = False,
ignore_promotions: bool = False) -> SubtypeKind:
return (False, # is proper subtype?
ignore_type_params,
ignore_pos_arg_names,
ignore_declared_variance,
ignore_promotions)
def _is_subtype(self, left: Type, right: Type) -> bool:
return is_subtype(left, right,
ignore_type_params=self.ignore_type_params,
ignore_pos_arg_names=self.ignore_pos_arg_names,
ignore_declared_variance=self.ignore_declared_variance,
ignore_promotions=self.ignore_promotions)
# visit_x(left) means: is left (which is an instance of X) a subtype of
# right?
def visit_unbound_type(self, left: UnboundType) -> bool:
return True
def visit_any(self, left: AnyType) -> bool:
return True
def visit_none_type(self, left: NoneType) -> bool:
if state.strict_optional:
if isinstance(self.right, NoneType) or is_named_instance(self.right,
'builtins.object'):
return True
if isinstance(self.right, Instance) and self.right.type.is_protocol:
members = self.right.type.protocol_members
# None is compatible with Hashable (and other similar protocols). This is
# slightly sloppy since we don't check the signature of "__hash__".
return not members or members == ["__hash__"]
return False
else:
return True
def visit_uninhabited_type(self, left: UninhabitedType) -> bool:
return True
def visit_erased_type(self, left: ErasedType) -> bool:
return True
def visit_deleted_type(self, left: DeletedType) -> bool:
return True
def visit_instance(self, left: Instance) -> bool:
if left.type.fallback_to_any:
if isinstance(self.right, NoneType):
# NOTE: `None` is a *non-subclassable* singleton, therefore no class
# can by a subtype of it, even with an `Any` fallback.
# This special case is needed to treat descriptors in classes with
# dynamic base classes correctly, see #5456.
return False
return True
right = self.right
if isinstance(right, TupleType) and mypy.typeops.tuple_fallback(right).type.is_enum:
return self._is_subtype(left, mypy.typeops.tuple_fallback(right))
if isinstance(right, Instance):
if TypeState.is_cached_subtype_check(self._subtype_kind, left, right):
return True
if not self.ignore_promotions:
for base in left.type.mro:
if base._promote and self._is_subtype(base._promote, self.right):
TypeState.record_subtype_cache_entry(self._subtype_kind, left, right)
return True
rname = right.type.fullname
# Always try a nominal check if possible,
# there might be errors that a user wants to silence *once*.
# NamedTuples are a special case, because `NamedTuple` is not listed
# in `TypeInfo.mro`, so when `(a: NamedTuple) -> None` is used,
# we need to check for `is_named_tuple` property
if ((left.type.has_base(rname) or rname == 'builtins.object'
or (rname == 'typing.NamedTuple'
and any(l.is_named_tuple for l in left.type.mro)))
and not self.ignore_declared_variance):
# Map left type to corresponding right instances.
t = map_instance_to_supertype(left, right.type)
nominal = True
for lefta, righta, tvar in zip(t.args, right.args, right.type.defn.type_vars):
if isinstance(tvar, TypeVarType):
if not self.check_type_parameter(lefta, righta, tvar.variance):
nominal = False
else:
if not is_equivalent(lefta, righta):
nominal = False
if nominal:
TypeState.record_subtype_cache_entry(self._subtype_kind, left, right)
return nominal
if right.type.is_protocol and is_protocol_implementation(left, right):
return True
return False
if isinstance(right, TypeType):
item = right.item
if isinstance(item, TupleType):
item = mypy.typeops.tuple_fallback(item)
if is_named_instance(left, 'builtins.type'):
return self._is_subtype(TypeType(AnyType(TypeOfAny.special_form)), right)
if left.type.is_metaclass():
if isinstance(item, AnyType):
return True
if isinstance(item, Instance):
return is_named_instance(item, 'builtins.object')
if isinstance(right, LiteralType) and left.last_known_value is not None:
return self._is_subtype(left.last_known_value, right)
if isinstance(right, CallableType):
# Special case: Instance can be a subtype of Callable.
call = find_member('__call__', left, left, is_operator=True)
if call:
return self._is_subtype(call, right)
return False
else:
return False
def visit_type_var(self, left: TypeVarType) -> bool:
right = self.right
if isinstance(right, TypeVarType) and left.id == right.id:
return True
if left.values and self._is_subtype(
mypy.typeops.make_simplified_union(left.values), right):
return True
return self._is_subtype(left.upper_bound, self.right)
def visit_param_spec(self, left: ParamSpecType) -> bool:
right = self.right
if (
isinstance(right, ParamSpecType)
and right.id == left.id
and right.flavor == left.flavor
):
return True
return self._is_subtype(left.upper_bound, self.right)
def visit_unpack_type(self, left: UnpackType) -> bool:
raise NotImplementedError
def visit_callable_type(self, left: CallableType) -> bool:
right = self.right
if isinstance(right, CallableType):
if left.type_guard is not None and right.type_guard is not None:
if not self._is_subtype(left.type_guard, right.type_guard):
return False
elif right.type_guard is not None and left.type_guard is None:
# This means that one function has `TypeGuard` and other does not.
# They are not compatible. See https://github.com/python/mypy/issues/11307
return False
return is_callable_compatible(
left, right,
is_compat=self._is_subtype,
ignore_pos_arg_names=self.ignore_pos_arg_names)
elif isinstance(right, Overloaded):
return all(self._is_subtype(left, item) for item in right.items)
elif isinstance(right, Instance):
if right.type.is_protocol and right.type.protocol_members == ['__call__']:
# OK, a callable can implement a protocol with a single `__call__` member.
# TODO: we should probably explicitly exclude self-types in this case.
call = find_member('__call__', right, left, is_operator=True)
assert call is not None
if self._is_subtype(left, call):
return True
return self._is_subtype(left.fallback, right)
elif isinstance(right, TypeType):
# This is unsound, we don't check the __init__ signature.
return left.is_type_obj() and self._is_subtype(left.ret_type, right.item)
else:
return False
def visit_tuple_type(self, left: TupleType) -> bool:
right = self.right
if isinstance(right, Instance):
if is_named_instance(right, 'typing.Sized'):
return True
elif is_named_instance(right, TUPLE_LIKE_INSTANCE_NAMES):
if right.args:
iter_type = right.args[0]
else:
iter_type = AnyType(TypeOfAny.special_form)
return all(self._is_subtype(li, iter_type) for li in left.items)
elif self._is_subtype(mypy.typeops.tuple_fallback(left), right):
return True
return False
elif isinstance(right, TupleType):
if len(left.items) != len(right.items):
return False
for l, r in zip(left.items, right.items):
if not self._is_subtype(l, r):
return False
rfallback = mypy.typeops.tuple_fallback(right)
if is_named_instance(rfallback, 'builtins.tuple'):
# No need to verify fallback. This is useful since the calculated fallback
# may be inconsistent due to how we calculate joins between unions vs.
# non-unions. For example, join(int, str) == object, whereas
# join(Union[int, C], Union[str, C]) == Union[int, str, C].
return True
lfallback = mypy.typeops.tuple_fallback(left)
if not self._is_subtype(lfallback, rfallback):
return False
return True
else:
return False
def visit_typeddict_type(self, left: TypedDictType) -> bool:
right = self.right
if isinstance(right, Instance):
return self._is_subtype(left.fallback, right)
elif isinstance(right, TypedDictType):
if not left.names_are_wider_than(right):
return False
for name, l, r in left.zip(right):
if not is_equivalent(l, r,
ignore_type_params=self.ignore_type_params):
return False
# Non-required key is not compatible with a required key since
# indexing may fail unexpectedly if a required key is missing.
# Required key is not compatible with a non-required key since
# the prior doesn't support 'del' but the latter should support
# it.
#
# NOTE: 'del' support is currently not implemented (#3550). We
# don't want to have to change subtyping after 'del' support
# lands so here we are anticipating that change.
if (name in left.required_keys) != (name in right.required_keys):
return False
# (NOTE: Fallbacks don't matter.)
return True
else:
return False
def visit_literal_type(self, left: LiteralType) -> bool:
if isinstance(self.right, LiteralType):
return left == self.right
else:
return self._is_subtype(left.fallback, self.right)
def visit_overloaded(self, left: Overloaded) -> bool:
right = self.right
if isinstance(right, Instance):
if right.type.is_protocol and right.type.protocol_members == ['__call__']:
# same as for CallableType
call = find_member('__call__', right, left, is_operator=True)
assert call is not None
if self._is_subtype(left, call):
return True
return self._is_subtype(left.fallback, right)
elif isinstance(right, CallableType):
for item in left.items:
if self._is_subtype(item, right):
return True
return False
elif isinstance(right, Overloaded):
if left == self.right:
# When it is the same overload, then the types are equal.
return True
# Ensure each overload in the right side (the supertype) is accounted for.
previous_match_left_index = -1
matched_overloads = set()
possible_invalid_overloads = set()
for right_index, right_item in enumerate(right.items):
found_match = False
for left_index, left_item in enumerate(left.items):
subtype_match = self._is_subtype(left_item, right_item)
# Order matters: we need to make sure that the index of
# this item is at least the index of the previous one.
if subtype_match and previous_match_left_index <= left_index:
if not found_match:
# Update the index of the previous match.
previous_match_left_index = left_index
found_match = True
matched_overloads.add(left_item)
possible_invalid_overloads.discard(left_item)
else:
# If this one overlaps with the supertype in any way, but it wasn't
# an exact match, then it's a potential error.
if (is_callable_compatible(left_item, right_item,
is_compat=self._is_subtype, ignore_return=True,
ignore_pos_arg_names=self.ignore_pos_arg_names) or
is_callable_compatible(right_item, left_item,
is_compat=self._is_subtype, ignore_return=True,
ignore_pos_arg_names=self.ignore_pos_arg_names)):
# If this is an overload that's already been matched, there's no
# problem.
if left_item not in matched_overloads:
possible_invalid_overloads.add(left_item)
if not found_match:
return False
if possible_invalid_overloads:
# There were potentially invalid overloads that were never matched to the
# supertype.
return False
return True
elif isinstance(right, UnboundType):
return True
elif isinstance(right, TypeType):
# All the items must have the same type object status, so
# it's sufficient to query only (any) one of them.
# This is unsound, we don't check all the __init__ signatures.
return left.is_type_obj() and self._is_subtype(left.items[0], right)
else:
return False
def visit_union_type(self, left: UnionType) -> bool:
return all(self._is_subtype(item, self.orig_right) for item in left.items)
def visit_partial_type(self, left: PartialType) -> bool:
# This is indeterminate as we don't really know the complete type yet.
if left.type is None:
# Special case, partial `None`. This might happen when defining
# class-level attributes with explicit `None`.
# We can still recover from this.
# https://github.com/python/mypy/issues/11105
return self.visit_none_type(NoneType())
raise RuntimeError(f'Partial type "{left}" cannot be checked with "issubtype()"')
def visit_type_type(self, left: TypeType) -> bool:
right = self.right
if isinstance(right, TypeType):
return self._is_subtype(left.item, right.item)
if isinstance(right, CallableType):
# This is unsound, we don't check the __init__ signature.
return self._is_subtype(left.item, right.ret_type)
if isinstance(right, Instance):
if right.type.fullname in ['builtins.object', 'builtins.type']:
return True
item = left.item
if isinstance(item, TypeVarType):
item = get_proper_type(item.upper_bound)
if isinstance(item, Instance):
metaclass = item.type.metaclass_type
return metaclass is not None and self._is_subtype(metaclass, right)
return False
def visit_type_alias_type(self, left: TypeAliasType) -> bool:
assert False, "This should be never called, got {}".format(left)
T = TypeVar('T', Instance, TypeAliasType)
@contextmanager
def pop_on_exit(stack: List[Tuple[T, T]],
left: T, right: T) -> Iterator[None]:
stack.append((left, right))
yield
stack.pop()
def is_protocol_implementation(left: Instance, right: Instance,
proper_subtype: bool = False) -> bool:
"""Check whether 'left' implements the protocol 'right'.
If 'proper_subtype' is True, then check for a proper subtype.
Treat recursive protocols by using the 'assuming' structural subtype matrix
(in sparse representation, i.e. as a list of pairs (subtype, supertype)),
see also comment in nodes.TypeInfo. When we enter a check for classes
(A, P), defined as following::
class P(Protocol):
def f(self) -> P: ...
class A:
def f(self) -> A: ...
this results in A being a subtype of P without infinite recursion.
On every false result, we pop the assumption, thus avoiding an infinite recursion
as well.
"""
assert right.type.is_protocol
# We need to record this check to generate protocol fine-grained dependencies.
TypeState.record_protocol_subtype_check(left.type, right.type)
# nominal subtyping currently ignores '__init__' and '__new__' signatures
members_not_to_check = {'__init__', '__new__'}
# Trivial check that circumvents the bug described in issue 9771:
if left.type.is_protocol:
members_right = set(right.type.protocol_members) - members_not_to_check
members_left = set(left.type.protocol_members) - members_not_to_check
if not members_right.issubset(members_left):
return False
assuming = right.type.assuming_proper if proper_subtype else right.type.assuming
for (l, r) in reversed(assuming):
if l == left and r == right:
return True
with pop_on_exit(assuming, left, right):
for member in right.type.protocol_members:
if member in members_not_to_check:
continue
ignore_names = member != '__call__' # __call__ can be passed kwargs
# The third argument below indicates to what self type is bound.
# We always bind self to the subtype. (Similarly to nominal types).
supertype = get_proper_type(find_member(member, right, left))
assert supertype is not None
subtype = get_proper_type(find_member(member, left, left))
# Useful for debugging:
# print(member, 'of', left, 'has type', subtype)
# print(member, 'of', right, 'has type', supertype)
if not subtype:
return False
if isinstance(subtype, PartialType):
subtype = NoneType() if subtype.type is None else Instance(
subtype.type, [AnyType(TypeOfAny.unannotated)] * len(subtype.type.type_vars)
)
if not proper_subtype:
# Nominal check currently ignores arg names
# NOTE: If we ever change this, be sure to also change the call to
# SubtypeVisitor.build_subtype_kind(...) down below.
is_compat = is_subtype(subtype, supertype, ignore_pos_arg_names=ignore_names)
else:
is_compat = is_proper_subtype(subtype, supertype)
if not is_compat:
return False
if isinstance(subtype, NoneType) and isinstance(supertype, CallableType):
# We want __hash__ = None idiom to work even without --strict-optional
return False
subflags = get_member_flags(member, left.type)
superflags = get_member_flags(member, right.type)
if IS_SETTABLE in superflags:
# Check opposite direction for settable attributes.
if not is_subtype(supertype, subtype):
return False
if (IS_CLASSVAR in subflags) != (IS_CLASSVAR in superflags):
return False
if IS_SETTABLE in superflags and IS_SETTABLE not in subflags:
return False
# This rule is copied from nominal check in checker.py
if IS_CLASS_OR_STATIC in superflags and IS_CLASS_OR_STATIC not in subflags:
return False
if not proper_subtype:
# Nominal check currently ignores arg names, but __call__ is special for protocols
ignore_names = right.type.protocol_members != ['__call__']
subtype_kind = SubtypeVisitor.build_subtype_kind(ignore_pos_arg_names=ignore_names)
else:
subtype_kind = ProperSubtypeVisitor.build_subtype_kind()
TypeState.record_subtype_cache_entry(subtype_kind, left, right)
return True
def find_member(name: str,
itype: Instance,
subtype: Type,
is_operator: bool = False) -> Optional[Type]:
"""Find the type of member by 'name' in 'itype's TypeInfo.
Find the member type after applying type arguments from 'itype', and binding
'self' to 'subtype'. Return None if member was not found.
"""
# TODO: this code shares some logic with checkmember.analyze_member_access,
# consider refactoring.
info = itype.type
method = info.get_method(name)
if method:
if isinstance(method, Decorator):
return find_node_type(method.var, itype, subtype)
if method.is_property:
assert isinstance(method, OverloadedFuncDef)
dec = method.items[0]
assert isinstance(dec, Decorator)
return find_node_type(dec.var, itype, subtype)
return find_node_type(method, itype, subtype)
else:
# don't have such method, maybe variable or decorator?
node = info.get(name)
v = node.node if node else None
if isinstance(v, Var):
return find_node_type(v, itype, subtype)
if (not v and name not in ['__getattr__', '__setattr__', '__getattribute__'] and
not is_operator):
for method_name in ('__getattribute__', '__getattr__'):
# Normally, mypy assumes that instances that define __getattr__ have all
# attributes with the corresponding return type. If this will produce
# many false negatives, then this could be prohibited for
# structural subtyping.
method = info.get_method(method_name)
if method and method.info.fullname != 'builtins.object':
if isinstance(method, Decorator):
getattr_type = get_proper_type(find_node_type(method.var, itype, subtype))
else:
getattr_type = get_proper_type(find_node_type(method, itype, subtype))
if isinstance(getattr_type, CallableType):
return getattr_type.ret_type
return getattr_type
if itype.type.fallback_to_any:
return AnyType(TypeOfAny.special_form)
return None
def get_member_flags(name: str, info: TypeInfo) -> Set[int]:
"""Detect whether a member 'name' is settable, whether it is an
instance or class variable, and whether it is class or static method.
The flags are defined as following:
* IS_SETTABLE: whether this attribute can be set, not set for methods and
non-settable properties;
* IS_CLASSVAR: set if the variable is annotated as 'x: ClassVar[t]';
* IS_CLASS_OR_STATIC: set for methods decorated with @classmethod or
with @staticmethod.
"""
method = info.get_method(name)
setattr_meth = info.get_method('__setattr__')
if method:
if isinstance(method, Decorator):
if method.var.is_staticmethod or method.var.is_classmethod:
return {IS_CLASS_OR_STATIC}
elif method.is_property: # this could be settable property
assert isinstance(method, OverloadedFuncDef)
dec = method.items[0]
assert isinstance(dec, Decorator)
if dec.var.is_settable_property or setattr_meth:
return {IS_SETTABLE}
return set()
node = info.get(name)
if not node:
if setattr_meth:
return {IS_SETTABLE}
return set()
v = node.node
# just a variable
if isinstance(v, Var) and not v.is_property:
flags = {IS_SETTABLE}
if v.is_classvar:
flags.add(IS_CLASSVAR)
return flags
return set()
def find_node_type(node: Union[Var, FuncBase], itype: Instance, subtype: Type) -> Type:
"""Find type of a variable or method 'node' (maybe also a decorated method).
Apply type arguments from 'itype', and bind 'self' to 'subtype'.
"""
from mypy.typeops import bind_self
if isinstance(node, FuncBase):
typ: Optional[Type] = mypy.typeops.function_type(
node, fallback=Instance(itype.type.mro[-1], [])
)
else:
typ = node.type
typ = get_proper_type(typ)
if typ is None:
return AnyType(TypeOfAny.from_error)
# We don't need to bind 'self' for static methods, since there is no 'self'.
if (isinstance(node, FuncBase)
or (isinstance(typ, FunctionLike)
and node.is_initialized_in_class
and not node.is_staticmethod)):
assert isinstance(typ, FunctionLike)
signature = bind_self(typ, subtype,
is_classmethod=isinstance(node, Var) and node.is_classmethod)
if node.is_property:
assert isinstance(signature, CallableType)
typ = signature.ret_type
else:
typ = signature
itype = map_instance_to_supertype(itype, node.info)
typ = expand_type_by_instance(typ, itype)
return typ
def non_method_protocol_members(tp: TypeInfo) -> List[str]:
"""Find all non-callable members of a protocol."""
assert tp.is_protocol
result: List[str] = []
anytype = AnyType(TypeOfAny.special_form)
instance = Instance(tp, [anytype] * len(tp.defn.type_vars))
for member in tp.protocol_members:
typ = get_proper_type(find_member(member, instance, instance))
if not isinstance(typ, (Overloaded, CallableType)):
result.append(member)
return result
def is_callable_compatible(left: CallableType, right: CallableType,
*,
is_compat: Callable[[Type, Type], bool],
is_compat_return: Optional[Callable[[Type, Type], bool]] = None,
ignore_return: bool = False,
ignore_pos_arg_names: bool = False,
check_args_covariantly: bool = False,
allow_partial_overlap: bool = False) -> bool:
"""Is the left compatible with the right, using the provided compatibility check?
is_compat:
The check we want to run against the parameters.
is_compat_return:
The check we want to run against the return type.
If None, use the 'is_compat' check.
check_args_covariantly:
If true, check if the left's args is compatible with the right's
instead of the other way around (contravariantly).
This function is mostly used to check if the left is a subtype of the right which
is why the default is to check the args contravariantly. However, it's occasionally
useful to check the args using some other check, so we leave the variance
configurable.
For example, when checking the validity of overloads, it's useful to see if
the first overload alternative has more precise arguments then the second.
We would want to check the arguments covariantly in that case.
Note! The following two function calls are NOT equivalent:
is_callable_compatible(f, g, is_compat=is_subtype, check_args_covariantly=False)
is_callable_compatible(g, f, is_compat=is_subtype, check_args_covariantly=True)
The two calls are similar in that they both check the function arguments in
the same direction: they both run `is_subtype(argument_from_g, argument_from_f)`.
However, the two calls differ in which direction they check things like
keyword arguments. For example, suppose f and g are defined like so:
def f(x: int, *y: int) -> int: ...
def g(x: int) -> int: ...
In this case, the first call will succeed and the second will fail: f is a
valid stand-in for g but not vice-versa.
allow_partial_overlap:
By default this function returns True if and only if *all* calls to left are
also calls to right (with respect to the provided 'is_compat' function).
If this parameter is set to 'True', we return True if *there exists at least one*
call to left that's also a call to right.
In other words, we perform an existential check instead of a universal one;
we require left to only overlap with right instead of being a subset.
For example, suppose we set 'is_compat' to some subtype check and compare following:
f(x: float, y: str = "...", *args: bool) -> str
g(*args: int) -> str
This function would normally return 'False': f is not a subtype of g.
However, we would return True if this parameter is set to 'True': the two
calls are compatible if the user runs "f_or_g(3)". In the context of that
specific call, the two functions effectively have signatures of:
f2(float) -> str
g2(int) -> str
Here, f2 is a valid subtype of g2 so we return True.
Specifically, if this parameter is set this function will:
- Ignore optional arguments on either the left or right that have no
corresponding match.
- No longer mandate optional arguments on either side are also optional
on the other.
- No longer mandate that if right has a *arg or **kwarg that left must also
have the same.
Note: when this argument is set to True, this function becomes "symmetric" --
the following calls are equivalent:
is_callable_compatible(f, g,
is_compat=some_check,
check_args_covariantly=False,
allow_partial_overlap=True)
is_callable_compatible(g, f,
is_compat=some_check,
check_args_covariantly=True,
allow_partial_overlap=True)
If the 'some_check' function is also symmetric, the two calls would be equivalent
whether or not we check the args covariantly.
"""
if is_compat_return is None:
is_compat_return = is_compat
# If either function is implicitly typed, ignore positional arg names too
if left.implicit or right.implicit:
ignore_pos_arg_names = True
# Non-type cannot be a subtype of type.
if right.is_type_obj() and not left.is_type_obj():
return False
# A callable L is a subtype of a generic callable R if L is a
# subtype of every type obtained from R by substituting types for
# the variables of R. We can check this by simply leaving the
# generic variables of R as type variables, effectively varying
# over all possible values.
# It's okay even if these variables share ids with generic
# type variables of L, because generating and solving
# constraints for the variables of L to make L a subtype of R
# (below) treats type variables on the two sides as independent.
if left.variables:
# Apply generic type variables away in left via type inference.
unified = unify_generic_callable(left, right, ignore_return=ignore_return)
if unified is None:
return False
else:
left = unified
# If we allow partial overlaps, we don't need to leave R generic:
# if we can find even just a single typevar assignment which
# would make these callables compatible, we should return True.
# So, we repeat the above checks in the opposite direction. This also
# lets us preserve the 'symmetry' property of allow_partial_overlap.
if allow_partial_overlap and right.variables:
unified = unify_generic_callable(right, left, ignore_return=ignore_return)
if unified is not None:
right = unified
# Check return types.
if not ignore_return and not is_compat_return(left.ret_type, right.ret_type):
return False
if check_args_covariantly:
is_compat = flip_compat_check(is_compat)
if right.is_ellipsis_args:
return True
left_star = left.var_arg()
left_star2 = left.kw_arg()
right_star = right.var_arg()
right_star2 = right.kw_arg()
# Match up corresponding arguments and check them for compatibility. In
# every pair (argL, argR) of corresponding arguments from L and R, argL must
# be "more general" than argR if L is to be a subtype of R.
# Arguments are corresponding if they either share a name, share a position,
# or both. If L's corresponding argument is ambiguous, L is not a subtype of R.
# If left has one corresponding argument by name and another by position,
# consider them to be one "merged" argument (and not ambiguous) if they're
# both optional, they're name-only and position-only respectively, and they
# have the same type. This rule allows functions with (*args, **kwargs) to
# properly stand in for the full domain of formal arguments that they're
# used for in practice.
# Every argument in R must have a corresponding argument in L, and every
# required argument in L must have a corresponding argument in R.
# Phase 1: Confirm every argument in R has a corresponding argument in L.
# Phase 1a: If left and right can both accept an infinite number of args,
# their types must be compatible.
#
# Furthermore, if we're checking for compatibility in all cases,
# we confirm that if R accepts an infinite number of arguments,
# L must accept the same.
def _incompatible(left_arg: Optional[FormalArgument],
right_arg: Optional[FormalArgument]) -> bool:
if right_arg is None:
return False
if left_arg is None:
return not allow_partial_overlap
return not is_compat(right_arg.typ, left_arg.typ)
if _incompatible(left_star, right_star) or _incompatible(left_star2, right_star2):
return False
# Phase 1b: Check non-star args: for every arg right can accept, left must
# also accept. The only exception is if we are allowing partial
# partial overlaps: in that case, we ignore optional args on the right.
for right_arg in right.formal_arguments():
left_arg = mypy.typeops.callable_corresponding_argument(left, right_arg)
if left_arg is None:
if allow_partial_overlap and not right_arg.required:
continue
return False
if not are_args_compatible(left_arg, right_arg, ignore_pos_arg_names,
allow_partial_overlap, is_compat):
return False
# Phase 1c: Check var args. Right has an infinite series of optional positional
# arguments. Get all further positional args of left, and make sure
# they're more general then the corresponding member in right.
if right_star is not None:
# Synthesize an anonymous formal argument for the right
right_by_position = right.try_synthesizing_arg_from_vararg(None)
assert right_by_position is not None
i = right_star.pos
assert i is not None
while i < len(left.arg_kinds) and left.arg_kinds[i].is_positional():
if allow_partial_overlap and left.arg_kinds[i].is_optional():
break
left_by_position = left.argument_by_position(i)
assert left_by_position is not None
if not are_args_compatible(left_by_position, right_by_position,
ignore_pos_arg_names, allow_partial_overlap,
is_compat):
return False
i += 1
# Phase 1d: Check kw args. Right has an infinite series of optional named
# arguments. Get all further named args of left, and make sure
# they're more general then the corresponding member in right.
if right_star2 is not None: