forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheckmember.py
1045 lines (917 loc) · 46.1 KB
/
checkmember.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Type checking of attribute access"""
from typing import cast, Callable, Optional, Union, Sequence
from typing_extensions import TYPE_CHECKING
from mypy.types import (
Type, Instance, AnyType, TupleType, TypedDictType, CallableType, FunctionLike,
TypeVarLikeType, Overloaded, TypeVarType, UnionType, PartialType, TypeOfAny, LiteralType,
DeletedType, NoneType, TypeType, has_type_vars, get_proper_type, ProperType, ParamSpecType,
ENUM_REMOVED_PROPS
)
from mypy.nodes import (
TypeInfo, FuncBase, Var, FuncDef, SymbolNode, SymbolTable, Context,
MypyFile, TypeVarExpr, ARG_POS, ARG_STAR, ARG_STAR2, Decorator,
OverloadedFuncDef, TypeAlias, TempNode, is_final_node,
SYMBOL_FUNCBASE_TYPES, IndexExpr
)
from mypy.messages import MessageBuilder
from mypy.maptype import map_instance_to_supertype
from mypy.expandtype import expand_type_by_instance, freshen_function_type_vars
from mypy.erasetype import erase_typevars
from mypy.plugin import AttributeContext
from mypy.typeanal import set_any_tvars
from mypy import message_registry
from mypy import subtypes
from mypy import meet
from mypy.typeops import (
tuple_fallback, bind_self, erase_to_bound, class_callable, type_object_type_from_function,
make_simplified_union, function_type,
)
if TYPE_CHECKING: # import for forward declaration only
import mypy.checker
from mypy import state
class MemberContext:
"""Information and objects needed to type check attribute access.
Look at the docstring of analyze_member_access for more information.
"""
def __init__(self,
is_lvalue: bool,
is_super: bool,
is_operator: bool,
original_type: Type,
context: Context,
msg: MessageBuilder,
chk: 'mypy.checker.TypeChecker',
self_type: Optional[Type],
module_symbol_table: Optional[SymbolTable] = None) -> None:
self.is_lvalue = is_lvalue
self.is_super = is_super
self.is_operator = is_operator
self.original_type = original_type
self.self_type = self_type or original_type
self.context = context # Error context
self.msg = msg
self.chk = chk
self.module_symbol_table = module_symbol_table
def named_type(self, name: str) -> Instance:
return self.chk.named_type(name)
def not_ready_callback(self, name: str, context: Context) -> None:
self.chk.handle_cannot_determine_type(name, context)
def copy_modified(self, *, messages: Optional[MessageBuilder] = None,
self_type: Optional[Type] = None,
is_lvalue: Optional[bool] = None) -> 'MemberContext':
mx = MemberContext(self.is_lvalue, self.is_super, self.is_operator,
self.original_type, self.context, self.msg, self.chk,
self.self_type, self.module_symbol_table)
if messages is not None:
mx.msg = messages
if self_type is not None:
mx.self_type = self_type
if is_lvalue is not None:
mx.is_lvalue = is_lvalue
return mx
def analyze_member_access(name: str,
typ: Type,
context: Context,
is_lvalue: bool,
is_super: bool,
is_operator: bool,
msg: MessageBuilder, *,
original_type: Type,
chk: 'mypy.checker.TypeChecker',
override_info: Optional[TypeInfo] = None,
in_literal_context: bool = False,
self_type: Optional[Type] = None,
module_symbol_table: Optional[SymbolTable] = None) -> Type:
"""Return the type of attribute 'name' of 'typ'.
The actual implementation is in '_analyze_member_access' and this docstring
also applies to it.
This is a general operation that supports various different variations:
1. lvalue or non-lvalue access (setter or getter access)
2. supertype access when using super() (is_super == True and
'override_info' should refer to the supertype)
'original_type' is the most precise inferred or declared type of the base object
that we have available. When looking for an attribute of 'typ', we may perform
recursive calls targeting the fallback type, and 'typ' may become some supertype
of 'original_type'. 'original_type' is always preserved as the 'typ' type used in
the initial, non-recursive call. The 'self_type' is a component of 'original_type'
to which generic self should be bound (a narrower type that has a fallback to instance).
Currently this is used only for union types.
'module_symbol_table' is passed to this function if 'typ' is actually a module
and we want to keep track of the available attributes of the module (since they
are not available via the type object directly)
"""
mx = MemberContext(is_lvalue,
is_super,
is_operator,
original_type,
context,
msg,
chk=chk,
self_type=self_type,
module_symbol_table=module_symbol_table)
result = _analyze_member_access(name, typ, mx, override_info)
possible_literal = get_proper_type(result)
if (in_literal_context and isinstance(possible_literal, Instance) and
possible_literal.last_known_value is not None):
return possible_literal.last_known_value
else:
return result
def _analyze_member_access(name: str,
typ: Type,
mx: MemberContext,
override_info: Optional[TypeInfo] = None) -> Type:
# TODO: This and following functions share some logic with subtypes.find_member;
# consider refactoring.
typ = get_proper_type(typ)
if isinstance(typ, Instance):
return analyze_instance_member_access(name, typ, mx, override_info)
elif isinstance(typ, AnyType):
# The base object has dynamic type.
return AnyType(TypeOfAny.from_another_any, source_any=typ)
elif isinstance(typ, UnionType):
return analyze_union_member_access(name, typ, mx)
elif isinstance(typ, FunctionLike) and typ.is_type_obj():
return analyze_type_callable_member_access(name, typ, mx)
elif isinstance(typ, TypeType):
return analyze_type_type_member_access(name, typ, mx, override_info)
elif isinstance(typ, TupleType):
# Actually look up from the fallback instance type.
return _analyze_member_access(name, tuple_fallback(typ), mx, override_info)
elif isinstance(typ, (LiteralType, FunctionLike)):
# Actually look up from the fallback instance type.
return _analyze_member_access(name, typ.fallback, mx, override_info)
elif isinstance(typ, TypedDictType):
return analyze_typeddict_access(name, typ, mx, override_info)
elif isinstance(typ, NoneType):
return analyze_none_member_access(name, typ, mx)
elif isinstance(typ, TypeVarType):
return _analyze_member_access(name, typ.upper_bound, mx, override_info)
elif isinstance(typ, DeletedType):
mx.msg.deleted_as_rvalue(typ, mx.context)
return AnyType(TypeOfAny.from_error)
if mx.chk.should_suppress_optional_error([typ]):
return AnyType(TypeOfAny.from_error)
return mx.msg.has_no_attr(mx.original_type, typ, name, mx.context, mx.module_symbol_table)
# The several functions that follow implement analyze_member_access for various
# types and aren't documented individually.
def analyze_instance_member_access(name: str,
typ: Instance,
mx: MemberContext,
override_info: Optional[TypeInfo]) -> Type:
if name == '__init__' and not mx.is_super:
# Accessing __init__ in statically typed code would compromise
# type safety unless used via super().
mx.msg.fail(message_registry.CANNOT_ACCESS_INIT, mx.context)
return AnyType(TypeOfAny.from_error)
# The base object has an instance type.
info = typ.type
if override_info:
info = override_info
if (state.find_occurrences and
info.name == state.find_occurrences[0] and
name == state.find_occurrences[1]):
mx.msg.note("Occurrence of '{}.{}'".format(*state.find_occurrences), mx.context)
# Look up the member. First look up the method dictionary.
method = info.get_method(name)
if method and not isinstance(method, Decorator):
if method.is_property:
assert isinstance(method, OverloadedFuncDef)
first_item = cast(Decorator, method.items[0])
return analyze_var(name, first_item.var, typ, info, mx)
if mx.is_lvalue:
mx.msg.cant_assign_to_method(mx.context)
signature = function_type(method, mx.named_type('builtins.function'))
signature = freshen_function_type_vars(signature)
if name == '__new__':
# __new__ is special and behaves like a static method -- don't strip
# the first argument.
pass
else:
if isinstance(signature, FunctionLike) and name != '__call__':
# TODO: use proper treatment of special methods on unions instead
# of this hack here and below (i.e. mx.self_type).
dispatched_type = meet.meet_types(mx.original_type, typ)
signature = check_self_arg(signature, dispatched_type, method.is_class,
mx.context, name, mx.msg)
signature = bind_self(signature, mx.self_type, is_classmethod=method.is_class)
typ = map_instance_to_supertype(typ, method.info)
member_type = expand_type_by_instance(signature, typ)
freeze_type_vars(member_type)
return member_type
else:
# Not a method.
return analyze_member_var_access(name, typ, info, mx)
def analyze_type_callable_member_access(name: str,
typ: FunctionLike,
mx: MemberContext) -> Type:
# Class attribute.
# TODO super?
ret_type = typ.items[0].ret_type
assert isinstance(ret_type, ProperType)
if isinstance(ret_type, TupleType):
ret_type = tuple_fallback(ret_type)
if isinstance(ret_type, Instance):
if not mx.is_operator:
# When Python sees an operator (eg `3 == 4`), it automatically translates that
# into something like `int.__eq__(3, 4)` instead of `(3).__eq__(4)` as an
# optimization.
#
# While it normally it doesn't matter which of the two versions are used, it
# does cause inconsistencies when working with classes. For example, translating
# `int == int` to `int.__eq__(int)` would not work since `int.__eq__` is meant to
# compare two int _instances_. What we really want is `type(int).__eq__`, which
# is meant to compare two types or classes.
#
# This check makes sure that when we encounter an operator, we skip looking up
# the corresponding method in the current instance to avoid this edge case.
# See https://github.com/python/mypy/pull/1787 for more info.
# TODO: do not rely on same type variables being present in all constructor overloads.
result = analyze_class_attribute_access(ret_type, name, mx,
original_vars=typ.items[0].variables)
if result:
return result
# Look up from the 'type' type.
return _analyze_member_access(name, typ.fallback, mx)
else:
assert False, 'Unexpected type {}'.format(repr(ret_type))
def analyze_type_type_member_access(name: str,
typ: TypeType,
mx: MemberContext,
override_info: Optional[TypeInfo]) -> Type:
# Similar to analyze_type_callable_attribute_access.
item = None
fallback = mx.named_type('builtins.type')
ignore_messages = mx.msg.copy()
ignore_messages.disable_errors().__enter__()
if isinstance(typ.item, Instance):
item = typ.item
elif isinstance(typ.item, AnyType):
mx = mx.copy_modified(messages=ignore_messages)
return _analyze_member_access(name, fallback, mx, override_info)
elif isinstance(typ.item, TypeVarType):
upper_bound = get_proper_type(typ.item.upper_bound)
if isinstance(upper_bound, Instance):
item = upper_bound
elif isinstance(upper_bound, TupleType):
item = tuple_fallback(upper_bound)
elif isinstance(upper_bound, AnyType):
mx = mx.copy_modified(messages=ignore_messages)
return _analyze_member_access(name, fallback, mx, override_info)
elif isinstance(typ.item, TupleType):
item = tuple_fallback(typ.item)
elif isinstance(typ.item, FunctionLike) and typ.item.is_type_obj():
item = typ.item.fallback
elif isinstance(typ.item, TypeType):
# Access member on metaclass object via Type[Type[C]]
if isinstance(typ.item.item, Instance):
item = typ.item.item.type.metaclass_type
if item and not mx.is_operator:
# See comment above for why operators are skipped
result = analyze_class_attribute_access(item, name, mx, override_info)
if result:
if not (isinstance(get_proper_type(result), AnyType) and item.type.fallback_to_any):
return result
else:
# We don't want errors on metaclass lookup for classes with Any fallback
mx = mx.copy_modified(messages=ignore_messages)
if item is not None:
fallback = item.type.metaclass_type or fallback
return _analyze_member_access(name, fallback, mx, override_info)
def analyze_union_member_access(name: str, typ: UnionType, mx: MemberContext) -> Type:
with mx.msg.disable_type_names():
results = []
for subtype in typ.relevant_items():
# Self types should be bound to every individual item of a union.
item_mx = mx.copy_modified(self_type=subtype)
results.append(_analyze_member_access(name, subtype, item_mx))
return make_simplified_union(results)
def analyze_none_member_access(name: str, typ: NoneType, mx: MemberContext) -> Type:
is_python_3 = mx.chk.options.python_version[0] >= 3
# In Python 2 "None" has exactly the same attributes as "object". Python 3 adds a single
# extra attribute, "__bool__".
if is_python_3 and name == '__bool__':
literal_false = LiteralType(False, fallback=mx.named_type('builtins.bool'))
return CallableType(arg_types=[],
arg_kinds=[],
arg_names=[],
ret_type=literal_false,
fallback=mx.named_type('builtins.function'))
elif mx.chk.should_suppress_optional_error([typ]):
return AnyType(TypeOfAny.from_error)
else:
return _analyze_member_access(name, mx.named_type('builtins.object'), mx)
def analyze_member_var_access(name: str,
itype: Instance,
info: TypeInfo,
mx: MemberContext) -> Type:
"""Analyse attribute access that does not target a method.
This is logically part of analyze_member_access and the arguments are similar.
original_type is the type of E in the expression E.var
"""
# It was not a method. Try looking up a variable.
v = lookup_member_var_or_accessor(info, name, mx.is_lvalue)
vv = v
if isinstance(vv, Decorator):
# The associated Var node of a decorator contains the type.
v = vv.var
if isinstance(vv, TypeInfo):
# If the associated variable is a TypeInfo synthesize a Var node for
# the purposes of type checking. This enables us to type check things
# like accessing class attributes on an inner class.
v = Var(name, type=type_object_type(vv, mx.named_type))
v.info = info
if isinstance(vv, TypeAlias) and isinstance(get_proper_type(vv.target), Instance):
# Similar to the above TypeInfo case, we allow using
# qualified type aliases in runtime context if it refers to an
# instance type. For example:
# class C:
# A = List[int]
# x = C.A() <- this is OK
typ = instance_alias_type(vv, mx.named_type)
v = Var(name, type=typ)
v.info = info
if isinstance(v, Var):
implicit = info[name].implicit
# An assignment to final attribute is always an error,
# independently of types.
if mx.is_lvalue and not mx.chk.get_final_context():
check_final_member(name, info, mx.msg, mx.context)
return analyze_var(name, v, itype, info, mx, implicit=implicit)
elif isinstance(v, FuncDef):
assert False, "Did not expect a function"
elif (not v and name not in ['__getattr__', '__setattr__', '__getattribute__'] and
not mx.is_operator and mx.module_symbol_table is None):
# Above we skip ModuleType.__getattr__ etc. if we have a
# module symbol table, since the symbol table allows precise
# checking.
if not mx.is_lvalue:
for method_name in ('__getattribute__', '__getattr__'):
method = info.get_method(method_name)
# __getattribute__ is defined on builtins.object and returns Any, so without
# the guard this search will always find object.__getattribute__ and conclude
# that the attribute exists
if method and method.info.fullname != 'builtins.object':
bound_method = analyze_decorator_or_funcbase_access(
defn=method, itype=itype, info=info,
self_type=mx.self_type, name=method_name, mx=mx)
typ = map_instance_to_supertype(itype, method.info)
getattr_type = get_proper_type(expand_type_by_instance(bound_method, typ))
if isinstance(getattr_type, CallableType):
result = getattr_type.ret_type
else:
result = getattr_type
# Call the attribute hook before returning.
fullname = '{}.{}'.format(method.info.fullname, name)
hook = mx.chk.plugin.get_attribute_hook(fullname)
if hook:
result = hook(AttributeContext(get_proper_type(mx.original_type),
result, mx.context, mx.chk))
return result
else:
setattr_meth = info.get_method('__setattr__')
if setattr_meth and setattr_meth.info.fullname != 'builtins.object':
bound_type = analyze_decorator_or_funcbase_access(
defn=setattr_meth, itype=itype, info=info,
self_type=mx.self_type, name=name,
mx=mx.copy_modified(is_lvalue=False))
typ = map_instance_to_supertype(itype, setattr_meth.info)
setattr_type = get_proper_type(expand_type_by_instance(bound_type, typ))
if isinstance(setattr_type, CallableType) and len(setattr_type.arg_types) > 0:
return setattr_type.arg_types[-1]
if itype.type.fallback_to_any:
return AnyType(TypeOfAny.special_form)
# Could not find the member.
if mx.is_super:
mx.msg.undefined_in_superclass(name, mx.context)
return AnyType(TypeOfAny.from_error)
else:
if mx.chk and mx.chk.should_suppress_optional_error([itype]):
return AnyType(TypeOfAny.from_error)
return mx.msg.has_no_attr(
mx.original_type, itype, name, mx.context, mx.module_symbol_table
)
def check_final_member(name: str, info: TypeInfo, msg: MessageBuilder, ctx: Context) -> None:
"""Give an error if the name being assigned was declared as final."""
for base in info.mro:
sym = base.names.get(name)
if sym and is_final_node(sym.node):
msg.cant_assign_to_final(name, attr_assign=True, ctx=ctx)
def analyze_descriptor_access(descriptor_type: Type,
mx: MemberContext) -> Type:
"""Type check descriptor access.
Arguments:
descriptor_type: The type of the descriptor attribute being accessed
(the type of ``f`` in ``a.f`` when ``f`` is a descriptor).
mx: The current member access context.
Return:
The return type of the appropriate ``__get__`` overload for the descriptor.
"""
instance_type = get_proper_type(mx.original_type)
descriptor_type = get_proper_type(descriptor_type)
if isinstance(descriptor_type, UnionType):
# Map the access over union types
return make_simplified_union([
analyze_descriptor_access(typ, mx)
for typ in descriptor_type.items
])
elif not isinstance(descriptor_type, Instance):
return descriptor_type
if not descriptor_type.type.has_readable_member('__get__'):
return descriptor_type
dunder_get = descriptor_type.type.get_method('__get__')
if dunder_get is None:
mx.msg.fail(message_registry.DESCRIPTOR_GET_NOT_CALLABLE.format(descriptor_type),
mx.context)
return AnyType(TypeOfAny.from_error)
bound_method = analyze_decorator_or_funcbase_access(
defn=dunder_get, itype=descriptor_type, info=descriptor_type.type,
self_type=descriptor_type, name='__set__', mx=mx)
typ = map_instance_to_supertype(descriptor_type, dunder_get.info)
dunder_get_type = expand_type_by_instance(bound_method, typ)
if isinstance(instance_type, FunctionLike) and instance_type.is_type_obj():
owner_type = instance_type.items[0].ret_type
instance_type = NoneType()
elif isinstance(instance_type, TypeType):
owner_type = instance_type.item
instance_type = NoneType()
else:
owner_type = instance_type
callable_name = mx.chk.expr_checker.method_fullname(descriptor_type, "__get__")
dunder_get_type = mx.chk.expr_checker.transform_callee_type(
callable_name, dunder_get_type,
[TempNode(instance_type, context=mx.context),
TempNode(TypeType.make_normalized(owner_type), context=mx.context)],
[ARG_POS, ARG_POS], mx.context, object_type=descriptor_type,
)
_, inferred_dunder_get_type = mx.chk.expr_checker.check_call(
dunder_get_type,
[TempNode(instance_type, context=mx.context),
TempNode(TypeType.make_normalized(owner_type), context=mx.context)],
[ARG_POS, ARG_POS], mx.context, object_type=descriptor_type,
callable_name=callable_name)
inferred_dunder_get_type = get_proper_type(inferred_dunder_get_type)
if isinstance(inferred_dunder_get_type, AnyType):
# check_call failed, and will have reported an error
return inferred_dunder_get_type
if not isinstance(inferred_dunder_get_type, CallableType):
mx.msg.fail(message_registry.DESCRIPTOR_GET_NOT_CALLABLE.format(descriptor_type),
mx.context)
return AnyType(TypeOfAny.from_error)
return inferred_dunder_get_type.ret_type
def instance_alias_type(alias: TypeAlias,
named_type: Callable[[str], Instance]) -> Type:
"""Type of a type alias node targeting an instance, when appears in runtime context.
As usual, we first erase any unbound type variables to Any.
"""
target: Type = get_proper_type(alias.target)
assert isinstance(get_proper_type(target),
Instance), "Must be called only with aliases to classes"
target = get_proper_type(set_any_tvars(alias, alias.line, alias.column))
assert isinstance(target, Instance)
tp = type_object_type(target.type, named_type)
return expand_type_by_instance(tp, target)
def analyze_var(name: str,
var: Var,
itype: Instance,
info: TypeInfo,
mx: MemberContext, *,
implicit: bool = False) -> Type:
"""Analyze access to an attribute via a Var node.
This is conceptually part of analyze_member_access and the arguments are similar.
itype is the class object in which var is defined
original_type is the type of E in the expression E.var
if implicit is True, the original Var was created as an assignment to self
"""
# Found a member variable.
itype = map_instance_to_supertype(itype, var.info)
typ = var.type
if typ:
if isinstance(typ, PartialType):
return mx.chk.handle_partial_var_type(typ, mx.is_lvalue, var, mx.context)
if mx.is_lvalue and var.is_property and not var.is_settable_property:
# TODO allow setting attributes in subclass (although it is probably an error)
mx.msg.read_only_property(name, itype.type, mx.context)
if mx.is_lvalue and var.is_classvar:
mx.msg.cant_assign_to_classvar(name, mx.context)
t = get_proper_type(expand_type_by_instance(typ, itype))
result: Type = t
typ = get_proper_type(typ)
if var.is_initialized_in_class and isinstance(typ, FunctionLike) and not typ.is_type_obj():
if mx.is_lvalue:
if var.is_property:
if not var.is_settable_property:
mx.msg.read_only_property(name, itype.type, mx.context)
else:
mx.msg.cant_assign_to_method(mx.context)
if not var.is_staticmethod:
# Class-level function objects and classmethods become bound methods:
# the former to the instance, the latter to the class.
functype = typ
# Use meet to narrow original_type to the dispatched type.
# For example, assume
# * A.f: Callable[[A1], None] where A1 <: A (maybe A1 == A)
# * B.f: Callable[[B1], None] where B1 <: B (maybe B1 == B)
# * x: Union[A1, B1]
# In `x.f`, when checking `x` against A1 we assume x is compatible with A
# and similarly for B1 when checking against B
dispatched_type = meet.meet_types(mx.original_type, itype)
signature = freshen_function_type_vars(functype)
signature = check_self_arg(signature, dispatched_type, var.is_classmethod,
mx.context, name, mx.msg)
signature = bind_self(signature, mx.self_type, var.is_classmethod)
expanded_signature = get_proper_type(expand_type_by_instance(signature, itype))
freeze_type_vars(expanded_signature)
if var.is_property:
# A property cannot have an overloaded type => the cast is fine.
assert isinstance(expanded_signature, CallableType)
result = expanded_signature.ret_type
else:
result = expanded_signature
else:
if not var.is_ready:
mx.not_ready_callback(var.name, mx.context)
# Implicit 'Any' type.
result = AnyType(TypeOfAny.special_form)
fullname = '{}.{}'.format(var.info.fullname, name)
hook = mx.chk.plugin.get_attribute_hook(fullname)
if result and not mx.is_lvalue and not implicit:
result = analyze_descriptor_access(result, mx)
if hook:
result = hook(AttributeContext(get_proper_type(mx.original_type),
result, mx.context, mx.chk))
return result
def freeze_type_vars(member_type: Type) -> None:
if not isinstance(member_type, ProperType):
return
if isinstance(member_type, CallableType):
for v in member_type.variables:
v.id.meta_level = 0
if isinstance(member_type, Overloaded):
for it in member_type.items:
for v in it.variables:
v.id.meta_level = 0
def lookup_member_var_or_accessor(info: TypeInfo, name: str,
is_lvalue: bool) -> Optional[SymbolNode]:
"""Find the attribute/accessor node that refers to a member of a type."""
# TODO handle lvalues
node = info.get(name)
if node:
return node.node
else:
return None
def check_self_arg(functype: FunctionLike,
dispatched_arg_type: Type,
is_classmethod: bool,
context: Context, name: str,
msg: MessageBuilder) -> FunctionLike:
"""Check that an instance has a valid type for a method with annotated 'self'.
For example if the method is defined as:
class A:
def f(self: S) -> T: ...
then for 'x.f' we check that meet(type(x), A) <: S. If the method is overloaded, we
select only overloads items that satisfy this requirement. If there are no matching
overloads, an error is generated.
Note: dispatched_arg_type uses a meet to select a relevant item in case if the
original type of 'x' is a union. This is done because several special methods
treat union types in ad-hoc manner, so we can't use MemberContext.self_type yet.
"""
items = functype.items
if not items:
return functype
new_items = []
if is_classmethod:
dispatched_arg_type = TypeType.make_normalized(dispatched_arg_type)
for item in items:
if not item.arg_types or item.arg_kinds[0] not in (ARG_POS, ARG_STAR):
# No positional first (self) argument (*args is okay).
msg.no_formal_self(name, item, context)
# This is pretty bad, so just return the original signature if
# there is at least one such error.
return functype
else:
selfarg = item.arg_types[0]
if subtypes.is_subtype(dispatched_arg_type, erase_typevars(erase_to_bound(selfarg))):
new_items.append(item)
elif isinstance(selfarg, ParamSpecType):
# TODO: This is not always right. What's the most reasonable thing to do here?
new_items.append(item)
if not new_items:
# Choose first item for the message (it may be not very helpful for overloads).
msg.incompatible_self_argument(name, dispatched_arg_type, items[0],
is_classmethod, context)
return functype
if len(new_items) == 1:
return new_items[0]
return Overloaded(new_items)
def analyze_class_attribute_access(itype: Instance,
name: str,
mx: MemberContext,
override_info: Optional[TypeInfo] = None,
original_vars: Optional[Sequence[TypeVarLikeType]] = None
) -> Optional[Type]:
"""Analyze access to an attribute on a class object.
itype is the return type of the class object callable, original_type is the type
of E in the expression E.var, original_vars are type variables of the class callable
(for generic classes).
"""
info = itype.type
if override_info:
info = override_info
node = info.get(name)
if not node:
if info.fallback_to_any:
return AnyType(TypeOfAny.special_form)
return None
is_decorated = isinstance(node.node, Decorator)
is_method = is_decorated or isinstance(node.node, FuncBase)
if mx.is_lvalue:
if is_method:
mx.msg.cant_assign_to_method(mx.context)
if isinstance(node.node, TypeInfo):
mx.msg.fail(message_registry.CANNOT_ASSIGN_TO_TYPE, mx.context)
# If a final attribute was declared on `self` in `__init__`, then it
# can't be accessed on the class object.
if node.implicit and isinstance(node.node, Var) and node.node.is_final:
mx.msg.fail(message_registry.CANNOT_ACCESS_FINAL_INSTANCE_ATTR
.format(node.node.name), mx.context)
# An assignment to final attribute on class object is also always an error,
# independently of types.
if mx.is_lvalue and not mx.chk.get_final_context():
check_final_member(name, info, mx.msg, mx.context)
if info.is_enum and not (mx.is_lvalue or is_decorated or is_method):
enum_class_attribute_type = analyze_enum_class_attribute_access(itype, name, mx)
if enum_class_attribute_type:
return enum_class_attribute_type
t = node.type
if t:
if isinstance(t, PartialType):
symnode = node.node
assert isinstance(symnode, Var)
return mx.chk.handle_partial_var_type(t, mx.is_lvalue, symnode, mx.context)
# Find the class where method/variable was defined.
if isinstance(node.node, Decorator):
super_info: Optional[TypeInfo] = node.node.var.info
elif isinstance(node.node, (Var, SYMBOL_FUNCBASE_TYPES)):
super_info = node.node.info
else:
super_info = None
# Map the type to how it would look as a defining class. For example:
# class C(Generic[T]): ...
# class D(C[Tuple[T, S]]): ...
# D[int, str].method()
# Here itype is D[int, str], isuper is C[Tuple[int, str]].
if not super_info:
isuper = None
else:
isuper = map_instance_to_supertype(itype, super_info)
if isinstance(node.node, Var):
assert isuper is not None
# Check if original variable type has type variables. For example:
# class C(Generic[T]):
# x: T
# C.x # Error, ambiguous access
# C[int].x # Also an error, since C[int] is same as C at runtime
if isinstance(t, TypeVarType) or has_type_vars(t):
# Exception: access on Type[...], including first argument of class methods is OK.
if not isinstance(get_proper_type(mx.original_type), TypeType) or node.implicit:
if node.node.is_classvar:
message = message_registry.GENERIC_CLASS_VAR_ACCESS
else:
message = message_registry.GENERIC_INSTANCE_VAR_CLASS_ACCESS
mx.msg.fail(message, mx.context)
# Erase non-mapped variables, but keep mapped ones, even if there is an error.
# In the above example this means that we infer following types:
# C.x -> Any
# C[int].x -> int
t = erase_typevars(expand_type_by_instance(t, isuper))
is_classmethod = ((is_decorated and cast(Decorator, node.node).func.is_class)
or (isinstance(node.node, FuncBase) and node.node.is_class))
t = get_proper_type(t)
if isinstance(t, FunctionLike) and is_classmethod:
t = check_self_arg(t, mx.self_type, False, mx.context, name, mx.msg)
result = add_class_tvars(t, isuper, is_classmethod,
mx.self_type, original_vars=original_vars)
if not mx.is_lvalue:
result = analyze_descriptor_access(result, mx)
return result
elif isinstance(node.node, Var):
mx.not_ready_callback(name, mx.context)
return AnyType(TypeOfAny.special_form)
if isinstance(node.node, TypeVarExpr):
mx.msg.fail(message_registry.CANNOT_USE_TYPEVAR_AS_EXPRESSION.format(
info.name, name), mx.context)
return AnyType(TypeOfAny.from_error)
if isinstance(node.node, TypeInfo):
return type_object_type(node.node, mx.named_type)
if isinstance(node.node, MypyFile):
# Reference to a module object.
return mx.named_type('types.ModuleType')
if (isinstance(node.node, TypeAlias) and
isinstance(get_proper_type(node.node.target), Instance)):
return instance_alias_type(node.node, mx.named_type)
if is_decorated:
assert isinstance(node.node, Decorator)
if node.node.type:
return node.node.type
else:
mx.not_ready_callback(name, mx.context)
return AnyType(TypeOfAny.from_error)
else:
assert isinstance(node.node, FuncBase)
typ = function_type(node.node, mx.named_type('builtins.function'))
# Note: if we are accessing class method on class object, the cls argument is bound.
# Annotated and/or explicit class methods go through other code paths above, for
# unannotated implicit class methods we do this here.
if node.node.is_class:
typ = bind_self(typ, is_classmethod=True)
return typ
def analyze_enum_class_attribute_access(itype: Instance,
name: str,
mx: MemberContext,
) -> Optional[Type]:
# Skip these since Enum will remove it
if name in ENUM_REMOVED_PROPS:
return mx.msg.has_no_attr(
mx.original_type, itype, name, mx.context, mx.module_symbol_table
)
# For other names surrendered by underscores, we don't make them Enum members
if name.startswith('__') and name.endswith("__") and name.replace('_', '') != '':
return None
enum_literal = LiteralType(name, fallback=itype)
# When we analyze enums, the corresponding Instance is always considered to be erased
# due to how the signature of Enum.__new__ is `(cls: Type[_T], value: object) -> _T`
# in typeshed. However, this is really more of an implementation detail of how Enums
# are typed, and we really don't want to treat every single Enum value as if it were
# from type variable substitution. So we reset the 'erased' field here.
return itype.copy_modified(erased=False, last_known_value=enum_literal)
def analyze_typeddict_access(name: str, typ: TypedDictType,
mx: MemberContext, override_info: Optional[TypeInfo]) -> Type:
if name == '__setitem__':
if isinstance(mx.context, IndexExpr):
# Since we can get this during `a['key'] = ...`
# it is safe to assume that the context is `IndexExpr`.
item_type = mx.chk.expr_checker.visit_typeddict_index_expr(
typ, mx.context.index)
else:
# It can also be `a.__setitem__(...)` direct call.
# In this case `item_type` can be `Any`,
# because we don't have args available yet.
# TODO: check in `default` plugin that `__setitem__` is correct.
item_type = AnyType(TypeOfAny.implementation_artifact)
return CallableType(
arg_types=[mx.chk.named_type('builtins.str'), item_type],
arg_kinds=[ARG_POS, ARG_POS],
arg_names=[None, None],
ret_type=NoneType(),
fallback=mx.chk.named_type('builtins.function'),
name=name,
)
elif name == '__delitem__':
return CallableType(
arg_types=[mx.chk.named_type('builtins.str')],
arg_kinds=[ARG_POS],
arg_names=[None],
ret_type=NoneType(),
fallback=mx.chk.named_type('builtins.function'),
name=name,
)
return _analyze_member_access(name, typ.fallback, mx, override_info)
def add_class_tvars(t: ProperType, isuper: Optional[Instance],
is_classmethod: bool,
original_type: Type,
original_vars: Optional[Sequence[TypeVarLikeType]] = None) -> Type:
"""Instantiate type variables during analyze_class_attribute_access,
e.g T and Q in the following:
class A(Generic[T]):
@classmethod
def foo(cls: Type[Q]) -> Tuple[T, Q]: ...
class B(A[str]): pass
B.foo()
Args:
t: Declared type of the method (or property)
isuper: Current instance mapped to the superclass where method was defined, this
is usually done by map_instance_to_supertype()
is_classmethod: True if this method is decorated with @classmethod
original_type: The value of the type B in the expression B.foo() or the corresponding
component in case of a union (this is used to bind the self-types)
original_vars: Type variables of the class callable on which the method was accessed
Returns:
Expanded method type with added type variables (when needed).
"""
# TODO: verify consistency between Q and T
# We add class type variables if the class method is accessed on class object
# without applied type arguments, this matches the behavior of __init__().
# For example (continuing the example in docstring):
# A # The type of callable is def [T] () -> A[T], _not_ def () -> A[Any]
# A[int] # The type of callable is def () -> A[int]
# and
# A.foo # The type is generic def [T] () -> Tuple[T, A[T]]
# A[int].foo # The type is non-generic def () -> Tuple[int, A[int]]
#
# This behaviour is useful for defining alternative constructors for generic classes.
# To achieve such behaviour, we add the class type variables that are still free
# (i.e. appear in the return type of the class object on which the method was accessed).
if isinstance(t, CallableType):
tvars = original_vars if original_vars is not None else []
if is_classmethod:
t = freshen_function_type_vars(t)
t = bind_self(t, original_type, is_classmethod=True)
assert isuper is not None
t = cast(CallableType, expand_type_by_instance(t, isuper))
freeze_type_vars(t)
return t.copy_modified(variables=list(tvars) + list(t.variables))
elif isinstance(t, Overloaded):
return Overloaded([cast(CallableType, add_class_tvars(item, isuper,
is_classmethod, original_type,
original_vars=original_vars))
for item in t.items])
if isuper is not None:
t = cast(ProperType, expand_type_by_instance(t, isuper))
return t
def type_object_type(info: TypeInfo, named_type: Callable[[str], Instance]) -> ProperType:
"""Return the type of a type object.
For a generic type G with type variables T and S the type is generally of form
Callable[..., G[T, S]]
where ... are argument types for the __init__/__new__ method (without the self
argument). Also, the fallback type will be 'type' instead of 'function'.
"""
# We take the type from whichever of __init__ and __new__ is first
# in the MRO, preferring __init__ if there is a tie.
init_method = info.get('__init__')
new_method = info.get('__new__')
if not init_method or not is_valid_constructor(init_method.node):
# Must be an invalid class definition.
return AnyType(TypeOfAny.from_error)
# There *should* always be a __new__ method except the test stubs
# lack it, so just copy init_method in that situation
new_method = new_method or init_method
if not is_valid_constructor(new_method.node):
# Must be an invalid class definition.
return AnyType(TypeOfAny.from_error)
# The two is_valid_constructor() checks ensure this.
assert isinstance(new_method.node, (SYMBOL_FUNCBASE_TYPES, Decorator))
assert isinstance(init_method.node, (SYMBOL_FUNCBASE_TYPES, Decorator))
init_index = info.mro.index(init_method.node.info)
new_index = info.mro.index(new_method.node.info)
fallback = info.metaclass_type or named_type('builtins.type')
if init_index < new_index:
method: Union[FuncBase, Decorator] = init_method.node
is_new = False
elif init_index > new_index:
method = new_method.node
is_new = True
else:
if init_method.node.info.fullname == 'builtins.object':
# Both are defined by object. But if we've got a bogus
# base class, we can't know for sure, so check for that.
if info.fallback_to_any:
# Construct a universal callable as the prototype.
any_type = AnyType(TypeOfAny.special_form)
sig = CallableType(arg_types=[any_type, any_type],
arg_kinds=[ARG_STAR, ARG_STAR2],
arg_names=["_args", "_kwds"],
ret_type=any_type,
fallback=named_type('builtins.function'))
return class_callable(sig, info, fallback, None, is_new=False)
# Otherwise prefer __init__ in a tie. It isn't clear that this
# is the right thing, but __new__ caused problems with
# typeshed (#5647).