-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathwrappers.py
157 lines (126 loc) · 5.72 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import torch.nn as nn
from typing import Optional, Mapping, Union, Tuple
from .base import Merger, Compose
class SegmentationTTAWrapper(nn.Module):
"""Wrap PyTorch nn.Module (segmentation model) with test time augmentation transforms
Args:
model (torch.nn.Module): segmentation model with single input and single output
(.forward(x) should return either torch.Tensor or Mapping[str, torch.Tensor])
transforms (ttach.Compose): composition of test time transforms
merge_mode (str): method to merge augmented predictions mean/gmean/max/min/sum/tsharpen
output_mask_key (str): if model output is `dict`, specify which key belong to `mask`
"""
def __init__(
self,
model: nn.Module,
transforms: Compose,
merge_mode: str = "mean",
output_mask_key: Optional[str] = None,
):
super().__init__()
self.model = model
self.transforms = transforms
self.merge_mode = merge_mode
self.output_key = output_mask_key
def forward(
self, image: torch.Tensor, *args
) -> Union[torch.Tensor, Mapping[str, torch.Tensor]]:
merger = Merger(type=self.merge_mode, n=len(self.transforms))
for transformer in self.transforms:
augmented_image = transformer.augment_image(image)
augmented_output = self.model(augmented_image, *args)
if self.output_key is not None:
augmented_output = augmented_output[self.output_key]
deaugmented_output = transformer.deaugment_mask(augmented_output)
merger.append(deaugmented_output)
result = merger.result
if self.output_key is not None:
result = {self.output_key: result}
return result
class ClassificationTTAWrapper(nn.Module):
"""Wrap PyTorch nn.Module (classification model) with test time augmentation transforms
Args:
model (torch.nn.Module): classification model with single input and single output
(.forward(x) should return either torch.Tensor or Mapping[str, torch.Tensor])
transforms (ttach.Compose): composition of test time transforms
merge_mode (str): method to merge augmented predictions mean/gmean/max/min/sum/tsharpen
output_label_key (str): if model output is `dict`, specify which key belong to `label`
"""
def __init__(
self,
model: nn.Module,
transforms: Compose,
merge_mode: str = "mean",
output_label_key: Optional[str] = None,
):
super().__init__()
self.model = model
self.transforms = transforms
self.merge_mode = merge_mode
self.output_key = output_label_key
def forward(
self, image: torch.Tensor, *args
) -> Union[torch.Tensor, Mapping[str, torch.Tensor]]:
merger = Merger(type=self.merge_mode, n=len(self.transforms))
for transformer in self.transforms:
augmented_image = transformer.augment_image(image)
augmented_output = self.model(augmented_image, *args)
if self.output_key is not None:
augmented_output = augmented_output[self.output_key]
deaugmented_output = transformer.deaugment_label(augmented_output)
merger.append(deaugmented_output)
result = merger.result
if self.output_key is not None:
result = {self.output_key: result}
return result
class KeypointsTTAWrapper(nn.Module):
"""Wrap PyTorch nn.Module (keypoints model) with test time augmentation transforms
Args:
model (torch.nn.Module): keypoints model with single input and single output
in format [x1,y1, x2, y2, ..., xn, yn]
(.forward(x) should return either torch.Tensor or Mapping[str, torch.Tensor])
transforms (ttach.Compose): composition of test time transforms
merge_mode (str): method to merge augmented predictions mean/gmean/max/min/sum/tsharpen
output_keypoints_key (str): if model output is `dict`, specify which key belong to `label`
scaled (bool): True if model return x, y scaled values in [0, 1], else False
"""
def __init__(
self,
model: nn.Module,
transforms: Compose,
merge_mode: str = "mean",
output_keypoints_key: Optional[str] = None,
scaled: bool = False,
):
super().__init__()
self.model = model
self.transforms = transforms
self.merge_mode = merge_mode
self.output_key = output_keypoints_key
self.scaled = scaled
def forward(
self, image: torch.Tensor, *args
) -> Union[torch.Tensor, Mapping[str, torch.Tensor]]:
merger = Merger(type=self.merge_mode, n=len(self.transforms))
size = image.size()
batch_size, image_height, image_width = size[0], size[2], size[3]
for transformer in self.transforms:
augmented_image = transformer.augment_image(image)
augmented_output = self.model(augmented_image, *args)
if self.output_key is not None:
augmented_output = augmented_output[self.output_key]
augmented_output = augmented_output.reshape(batch_size, -1, 2)
if not self.scaled:
augmented_output[..., 0] /= image_width
augmented_output[..., 1] /= image_height
deaugmented_output = transformer.deaugment_keypoints(augmented_output)
merger.append(deaugmented_output)
result = merger.result
if not self.scaled:
result[..., 0] *= image_width
result[..., 1] *= image_height
result = result.reshape(batch_size, -1)
if self.output_key is not None:
result = {self.output_key: result}
return result