-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_map_coco.py
113 lines (99 loc) · 5.17 KB
/
get_map_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import json
import os
import numpy as np
import torch
from PIL import Image
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from tqdm import tqdm
from utils.utils import cvtColor, preprocess_input, resize_image
from yolo import YOLO
#---------------------------------------------------------------------------#
# map_mode用于指定该文件运行时计算的内容
# map_mode为0代表整个map计算流程,包括获得预测结果、计算map。
# map_mode为1代表仅仅获得预测结果。
# map_mode为2代表仅仅获得计算map。
#---------------------------------------------------------------------------#
map_mode = 0
#-------------------------------------------------------#
# 指向了验证集标签与图片路径
#-------------------------------------------------------#
cocoGt_path = 'coco_dataset/annotations/instances_val2017.json'
dataset_img_path = 'coco_dataset/val2017'
#-------------------------------------------------------#
# 结果输出的文件夹,默认为map_out
#-------------------------------------------------------#
temp_save_path = 'map_out/coco_eval'
class mAP_YOLO(YOLO):
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image_id, image, results):
#---------------------------------------------------#
# 计算输入图片的高和宽
#---------------------------------------------------#
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
#---------------------------------------------------------#
image = cvtColor(image)
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
with torch.no_grad():
images = torch.from_numpy(image_data)
if self.cuda:
images = images.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
outputs = self.net(images)
outputs = self.bbox_util.decode_box(outputs)
#---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
#---------------------------------------------------------#
outputs = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
if outputs[0] is None:
return results
top_label = np.array(outputs[0][:, 6], dtype = 'int32')
top_conf = outputs[0][:, 4] * outputs[0][:, 5]
top_boxes = outputs[0][:, :4]
for i, c in enumerate(top_label):
result = {}
top, left, bottom, right = top_boxes[i]
result["image_id"] = int(image_id)
result["category_id"] = clsid2catid[c]
result["bbox"] = [float(left),float(top),float(right-left),float(bottom-top)]
result["score"] = float(top_conf[i])
results.append(result)
return results
if __name__ == "__main__":
if not os.path.exists(temp_save_path):
os.makedirs(temp_save_path)
cocoGt = COCO(cocoGt_path)
ids = list(cocoGt.imgToAnns.keys())
clsid2catid = cocoGt.getCatIds()
if map_mode == 0 or map_mode == 1:
yolo = mAP_YOLO(confidence = 0.001, nms_iou = 0.65)
with open(os.path.join(temp_save_path, 'eval_results.json'),"w") as f:
results = []
for image_id in tqdm(ids):
image_path = os.path.join(dataset_img_path, cocoGt.loadImgs(image_id)[0]['file_name'])
image = Image.open(image_path)
results = yolo.detect_image(image_id, image, results)
json.dump(results, f)
if map_mode == 0 or map_mode == 2:
cocoDt = cocoGt.loadRes(os.path.join(temp_save_path, 'eval_results.json'))
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
print("Get map done.")