Skip to content

Commit

Permalink
[Doc] Add Chinese version of getting start doc (open-mmlab#5421)
Browse files Browse the repository at this point in the history
* add chinese docs framework (open-mmlab#5299)

* [Docs] add Chinese getting start document

* [Docs] add Chinese getting start document

* Update faq.md

* update getting_start_zh_doc

* update getting_start_zh_doc

* add Chinese version of getting_start doc

Co-authored-by: Wenwei Zhang <40779233+ZwwWayne@users.noreply.github.com>
Co-authored-by: ZwwWayne <wayne.zw@outlook.com>
  • Loading branch information
3 people authored Jul 8, 2021
1 parent 8811127 commit b9dedfd
Show file tree
Hide file tree
Showing 3 changed files with 233 additions and 5 deletions.
2 changes: 1 addition & 1 deletion docs/faq.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Frequently Asked Questions

We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the [provided templates](https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md) and make sure you fill in all required information in the template.
We list some common troubles faced by many users and their corresponding solutions here. Feel free to enrich the list if you find any frequent issues and have ways to help others to solve them. If the contents here do not cover your issue, please create an issue using the [provided templates](https://github.com/open-mmlab/mmdetection/blob/master/.github/ISSUE_TEMPLATE/error-report.md/) and make sure you fill in all required information in the template.

## MMCV Installation

Expand Down
8 changes: 4 additions & 4 deletions docs/get_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ The compatible MMDetection and MMCV versions are as below. Please install the co
| 2.1.0 | mmcv>=0.5.9, <=0.6.1|
| 2.0.0 | mmcv>=0.5.1, <=0.5.8|

Note: You need to run `pip uninstall mmcv` first if you have mmcv installed.
**Note:** You need to run `pip uninstall mmcv` first if you have mmcv installed.
If mmcv and mmcv-full are both installed, there will be `ModuleNotFoundError`.

## Installation
Expand Down Expand Up @@ -132,7 +132,7 @@ Or, you can install MMDetection manually:
pip install mmdet
```

Note:
**Note:**

a. Following the above instructions, MMDetection is installed on `dev` mode
, any local modifications made to the code will take effect without the need to reinstall it.
Expand Down Expand Up @@ -172,7 +172,7 @@ So if you try to run inference with a model containing above ops you will get an
| CARAFE | CARAFE |
| SyncBatchNorm | ResNeSt |
**Notice**: MMDetection does not support training with CPU for now.
**Notice:** MMDetection does not support training with CPU for now.
### Another option: Docker Image
Expand Down Expand Up @@ -200,7 +200,7 @@ conda activate open-mmlab
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -y
# install the latest mmcv
pip install mmcv-full==latest+torch1.6.0+cu101 -f https://download.openmmlab.com/mmcv/dist/index.html
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
# install mmdetection
git clone https://github.com/open-mmlab/mmdetection.git
Expand Down
228 changes: 228 additions & 0 deletions docs_zh-CN/get_started.md
Original file line number Diff line number Diff line change
@@ -1 +1,229 @@
## 依赖

- Linux 和 macOS (Windows 理论上支持)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (如果基于 PyTorch 源码安装,也能够支持 CUDA 9.0)
- GCC 5+
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)

MMDetection 和 MMCV 版本兼容性如下所示,需要安装正确的 MMCV 版本以避免安装出现问题。

| MMDetection 版本 | MMCV 版本 |
| :--------------: | :----------------------: |
| master | mmcv-full>=1.3.8, <1.4.0 |
| 2.14.0 | mmcv-full>=1.3.8, <1.4.0 |
| 2.13.0 | mmcv-full>=1.3.3, <1.4.0 |
| 2.12.0 | mmcv-full>=1.3.3, <1.4.0 |
| 2.11.0 | mmcv-full>=1.2.4, <1.4.0 |
| 2.10.0 | mmcv-full>=1.2.4, <1.4.0 |
| 2.9.0 | mmcv-full>=1.2.4, <1.4.0 |
| 2.8.0 | mmcv-full>=1.2.4, <1.4.0 |
| 2.7.0 | mmcv-full>=1.1.5, <1.4.0 |
| 2.6.0 | mmcv-full>=1.1.5, <1.4.0 |
| 2.5.0 | mmcv-full>=1.1.5, <1.4.0 |
| 2.4.0 | mmcv-full>=1.1.1, <1.4.0 |
| 2.3.0 | mmcv-full==1.0.5 |
| 2.3.0rc0 | mmcv-full>=1.0.2 |
| 2.2.1 | mmcv==0.6.2 |
| 2.2.0 | mmcv==0.6.2 |
| 2.1.0 | mmcv>=0.5.9, <=0.6.1 |
| 2.0.0 | mmcv>=0.5.1, <=0.5.8 |

**注意:**如果已经安装了 mmcv,首先需要使用 `pip uninstall mmcv` 卸载已安装的 mmcv,如果同时安装了 mmcv 和 mmcv-full,将会报 `ModuleNotFoundError` 错误。

## 安装流程

### 准备环境

1. 使用 conda 新建虚拟环境,并进入该虚拟环境;

```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
```

2. 基于 [PyTorch 官网](https://pytorch.org/)安装 PyTorch 和 torchvision,例如:

```shell
conda install pytorch torchvision -c pytorch
```

**注意**:需要确保 CUDA 的编译版本和运行版本匹配。可以在 [PyTorch 官网](https://pytorch.org/)查看预编译包所支持的 CUDA 版本。

`例 1` 例如在 `/usr/local/cuda` 下安装了 CUDA 10.1, 并想安装 PyTorch 1.5,则需要安装支持 CUDA 10.1 的预构建 PyTorch:

```shell
conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
```

`例 2` 例如在 `/usr/local/cuda` 下安装了 CUDA 9.2, 并想安装 PyTorch 1.3.1,则需要安装支持 CUDA 9.2 的预构建 PyTorch:

```shell
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
```

如果不是安装预构建的包,而是从源码中构建 PyTorch,则可以使用更多的 CUDA 版本,例如 CUDA 9.0。

### 安装 MMDetection

我们建议使用 [MIM](https://github.com/open-mmlab/mim) 来安装 MMDetection:

``` shell
pip install openmim
mim install mmdet
```

MIM 能够自动地安装 OpenMMLab 的项目以及对应的依赖包。

或者,可以手动安装 MMDetection:

1. 安装 mmcv-full,我们建议使用预构建包来安装:

```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

需要把命令行中的 `{cu_version}``{torch_version}` 替换成对应的版本。例如:在 CUDA 11 和 PyTorch 1.7.0 的环境下,可以使用下面命令安装最新版本的 MMCV:

```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
```

请参考 [MMCV](https://mmcv.readthedocs.io/en/latest/#installation) 获取不同版本的 MMCV 所兼容的的不同的 PyTorch 和 CUDA 版本。同时,也可以通过以下命令行从源码编译 MMCV:

```shell
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e . # 安装好 mmcv-full
cd ..
```

或者,可以直接使用命令行安装:

```shell
pip install mmcv-full
```

2. 将 MMDetection 仓库克隆至本地:

```shell
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
```

3. 首先安装需要的依赖包,然后安装 MMDetection:

```shell
pip install -r requirements/build.txt
pip install -v -e . # 或者使用 "python setup.py develop"
```

或者,可以使用更简单的命令安装 MMDetection:

```shell
pip install mmdet
```

**注意:**

(1) 按照上述说明,MMDetection 安装在 `dev` 模式下,因此在本地对代码做的任何修改都会生效,无需重新安装;

(2) 如果希望使用 `opencv-python-headless` 而不是 `opencv-python`, 可以在安装 MMCV 之前安装;

(3) 一些安装依赖是可以选择的。例如只需要安装最低运行要求的版本,则可以使用 `pip install -v -e .` 命令。如果希望使用可选择的像 `albumentations``imagecorruptions` 这种依赖项,可以使用 `pip install -r requirements/optional.txt ` 进行手动安装,或者在使用 `pip` 时指定所需的附加功能(例如 `pip install -v -e .[optional]`),支持附加功能的有效键值包括 `all``tests``build` 以及 `optional`

### 只在 CPU 安装

我们的代码能够建立在只使用 CPU 的环境(CUDA 不可用)。

在CPU模式下,可以运行 `demo/webcam_demo.py` 示例,然而以下功能将在 CPU 模式下不能使用:

- Deformable Convolution
- Modulated Deformable Convolution
- ROI pooling
- Deformable ROI pooling
- CARAFE: Content-Aware ReAssembly of FEatures
- SyncBatchNorm
- CrissCrossAttention: Criss-Cross Attention
- MaskedConv2d
- Temporal Interlace Shift
- nms_cuda
- sigmoid_focal_loss_cuda
- bbox_overlaps

因此,如果尝试使用包含上述操作的模型进行推理,将会报错。下表列出了由于依赖上述算子而无法在 CPU 上运行的相关模型:

| 操作 | 模型 |
| :-----------------------------------------------------: | :----------------------------------------------------------: |
| Deformable Convolution/Modulated Deformable Convolution | DCN、Guided Anchoring、RepPoints、CentripetalNet、VFNet、CascadeRPN、NAS-FCOS、DetectoRS |
| MaskedConv2d | Guided Anchoring |
| CARAFE | CARAFE |
| SyncBatchNorm | ResNeSt |

**注意**: MMDetection 目前不支持使用 CPU 进行训练。

### 另一种选择: Docker Image

我们提供了 [Dockerfile](https://github.com/open-mmlab/mmdetection/blob/master/docker/Dockerfile) 来生成图片,请确保 [docker](https://docs.docker.com/engine/install/) 的版本 >= 19.03。

```shell
# 基于 PyTorch 1.6, CUDA 10.1 生成图片
docker build -t mmdetection docker/
```

运行命令:

```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection
```

### 从零开始设置脚本

假设当前已经成功安装 CUDA 10.1,这里提供了一个完整的基于 conda 安装 MMDetection 的脚本:

```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch -y
# 安装最新版本的 mmcv
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/index.html
# 安装 MMDetection
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
```

### 使用多个 MMDetection 版本进行开发

训练和测试的脚本已经在 PYTHONPATH 中进行了修改,以确保脚本使用当前目录中的 MMDetection。

要使环境中安装默认的 MMDetection 而不是当前正在在使用的,可以删除出现在相关脚本中的代码:

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
```

## 验证

为了验证是否正确安装了 MMDetection 和所需的环境,我们可以运行示例的 Python 代码来初始化检测器并推理一个演示图像:

```python
from mmdet.apis import init_detector, inference_detector
config_file = 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
# 从 model zoo 下载 checkpoint 并放在 `checkpoints/` 文件下
# 网址为: http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
device = 'cuda:0'
# 初始化检测器
model = init_detector(config_file, checkpoint_file, device=device)
# 推理演示图像
inference_detector(model, 'demo/demo.jpg')
```

如果成功安装 MMDetection,则上面的代码可以完整地运行。

0 comments on commit b9dedfd

Please sign in to comment.