forked from open-mmlab/mmrotate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
huge_image_demo.py
80 lines (70 loc) · 2.49 KB
/
huge_image_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) OpenMMLab. All rights reserved.
"""Inference on huge images.
Example:
```
wget -P checkpoint https://download.openmmlab.com/mmrotate/v0.1.0/oriented_rcnn/oriented_rcnn_r50_fpn_1x_dota_le90/oriented_rcnn_r50_fpn_1x_dota_le90-6d2b2ce0.pth # noqa: E501, E261.
python demo/huge_image_demo.py \
demo/dota_demo.jpg \
configs/oriented_rcnn/oriented_rcnn_r50_fpn_1x_dota_v3.py \
checkpoint/oriented_rcnn_r50_fpn_1x_dota_le90-6d2b2ce0.pth \
```
""" # nowq
from argparse import ArgumentParser
from mmdet.apis import init_detector, show_result_pyplot
from mmrotate.apis import inference_detector_by_patches
def parse_args():
parser = ArgumentParser()
parser.add_argument('img', help='Image file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--patch_sizes',
type=int,
nargs='+',
default=[1024],
help='The sizes of patches')
parser.add_argument(
'--patch_steps',
type=int,
nargs='+',
default=[824],
help='The steps between two patches')
parser.add_argument(
'--img_ratios',
type=float,
nargs='+',
default=[1.0],
help='Image resizing ratios for multi-scale detecting')
parser.add_argument(
'--merge_iou_thr',
type=float,
default=0.1,
help='IoU threshould for merging results')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='dota',
choices=['dota', 'sar', 'hrsc', 'hrsc_classwise', 'random'],
help='Color palette used for visualization')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='bbox score threshold')
args = parser.parse_args()
return args
def main(args):
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
# test a huge image by patches
result = inference_detector_by_patches(model, args.img, args.patch_sizes,
args.patch_steps, args.img_ratios,
args.merge_iou_thr)
# show the results
show_result_pyplot(
model,
args.img,
result,
palette=args.palette,
score_thr=args.score_thr)
if __name__ == '__main__':
args = parse_args()
main(args)