-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy patheval.py
149 lines (124 loc) · 5.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from classifier_inception_resnet_v2 import *
from classifier_inception_v3 import *
from classifier_xception import *
from classifier_resnet import *
from classifier_vgg16 import *
from predictor import *
from PIL import Image
from config import *
import numpy as np
import im_utils
import utils
import json
import time
import os
# noinspection PyTypeChecker
def dump_json(predictor, save_path=PATH_JSON_DUMP, target_dir=PATH_VAL_IMAGES, batch_size=16):
result = eval_predictor(predictor, target_dir, batch_size, dump_json_handler)
dir = os.path.dirname(save_path)
if not os.path.exists(dir):
os.makedirs(dir)
with open(save_path, 'w') as f:
json.dump(result, f)
print('Dump finished.')
def dump_json_handler(image_id, label_id):
return {'image_id': image_id, 'label_id': label_id}
def default_handler(image_id, label_id):
return image_id, label_id
def eval_predictor(func_predict, target_dir=PATH_VAL_IMAGES,
batch_size=32, item_handler=default_handler):
print('Start eval predictor...')
result = []
images = utils.get_files(target_dir)
n_images = len(images)
n_batch = n_images // batch_size
n_last_batch = n_images % batch_size
def predict_batch(start, end):
predictions = func_predict(images[start: end])
image_ids = [os.path.basename(image) for image in images[start: end]]
return [item_handler(image_ids[i], predictions[i]) for i in range(end - start)]
import sys
for batch in range(n_batch):
index = batch * batch_size
batch_result = predict_batch(index, index + batch_size)
result.extend(batch_result)
sys.stdout.write('\rProcessing %d/%d' % (index + batch_size, n_images))
sys.stdout.flush()
if n_last_batch:
index = n_batch * batch_size
batch_result = predict_batch(index, index + n_last_batch)
result.extend(batch_result)
sys.stdout.write('\rProcessing %d/%d' % (index + n_last_batch, n_images))
sys.stdout.flush()
sys.stdout.write('\n')
return result
def __load_data(submit_file, reference_file, result):
# load submit result and reference result
with open(submit_file, 'r') as file1:
submit_data = json.load(file1)
with open(reference_file, 'r') as file1:
ref_data = json.load(file1)
if len(submit_data) != len(ref_data):
result['warning'].append('Inconsistent number of images between submission and reference data \n')
submit_dict = {}
ref_dict = {}
for item in submit_data:
submit_dict[item['image_id']] = item['label_id']
for item in ref_data:
ref_dict[item['image_id']] = int(item['label_id'])
return submit_dict, ref_dict
def __eval_result(submit_dict, ref_dict, result):
# eval accuracy
right_count = 0
for (key, value) in ref_dict.items():
if key not in set(submit_dict.keys()):
result['warning'].append('lacking image %s in your submission file \n' % key)
print('warnning: lacking image %s in your submission file' % key)
continue
if value in submit_dict[key][:3]:
right_count += 1
result['score'] = str(float(right_count) / max(len(ref_dict), 1e-5))
return result
def evaluate(eval_json, target_json):
if not os.path.exists(eval_json):
raise Exception('Submit result "%s" not found. Call dump_json to dump result first.' % PATH_JSON_DUMP)
result = {'error': [], 'warning': [], 'score': None}
START_TIME = time.time()
SUBMIT = {}
REF = {}
try:
SUBMIT, REF = __load_data(eval_json, target_json, result)
except Exception as error:
result['error'].append(str(error))
try:
result = __eval_result(SUBMIT, REF, result)
except Exception as error:
result['error'].append(str(error))
print('Evaluation time of your result: %f s' % (time.time() - START_TIME))
print(result)
print('Score is %s' % result['score'])
DUMP_JSON = True
EVAL = True
MODE = None # ['train', 'val', 'test', 'flip', None]
WEIGHTS_MODE = 'loss' # ['acc', 'loss']
INTEGRATED_POLICY = 'ada_boost' # ['avg', 'model_weight', 'label_weight', 'ada_boost']
if __name__ == '__main__':
if DUMP_JSON:
try:
# single predictor
# predictor = KerasPredictor(InceptionRestNetV2Classifier(), 'val')
# predictor = KerasPredictor(XceptionClassifier('xception_old_trainable'), None, preprocess=default_preprocess_input)
# integrated predictor
predictor = IntegratedPredictor([
KerasPredictor(VGG16Classifier(weights_mode=WEIGHTS_MODE), MODE),
KerasPredictor(RestNetClassifier('resnet_adam', weights_mode=WEIGHTS_MODE), MODE),
KerasPredictor(XceptionClassifier('xception_aug', weights_mode=WEIGHTS_MODE), MODE),
# KerasPredictor(XceptionClassifier('xception_old_trainable', weights_mode=WEIGHTS_MODE), None, preprocess=default_preprocess_input),
KerasPredictor(InceptionV3Classifier(weights_mode=WEIGHTS_MODE), MODE),
KerasPredictor(InceptionRestNetV2Classifier(weights_mode=WEIGHTS_MODE), MODE),
], policy=INTEGRATED_POLICY)
dump_json(predictor, batch_size=128)
finally:
im_utils.recycle_pool()
if EVAL:
evaluate(PATH_JSON_DUMP, PATH_VAL_JSON)