Skip to content

Commit

Permalink
Merge pull request wesleybowman#96 from efiring/order_constit
Browse files Browse the repository at this point in the history
Order constit
  • Loading branch information
efiring authored Mar 11, 2021
2 parents 5f15bcb + 9dc3e00 commit ef3d445
Show file tree
Hide file tree
Showing 3 changed files with 165 additions and 88 deletions.
77 changes: 77 additions & 0 deletions tests/test_order_constit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import numpy as np
import pytest

from utide import reconstruct, solve
from utide._ut_constants import constit_index_dict, ut_constants


ts = 735604
duration = 35

time = np.linspace(ts, ts + duration, 842)
tref = (time[-1] + time[0]) / 2

const = ut_constants.const

amps = [1.0, 0.5, 0.6, 0.1]
names = ["M2", "S2", "K1", "O1"]
cpds = [24 * const.freq[constit_index_dict[name]] for name in names]
sinusoids = []
for amp, cpd in zip(amps, cpds):
arg = 2 * np.pi * (time - tref) * cpd
sinusoids.append(amp * np.cos(arg))
tide = np.hstack(tuple(sinusoids)).sum(axis=0)

np.random.seed(1234)
noise = 1e-3 * np.random.randn(len(time))

time_series = tide + noise

opts0 = {
"constit": ["K1", "M2", "O1", "S2"],
"order_constit": "frequency",
"phase": "raw",
"nodal": False,
"trend": False,
"method": "ols",
"conf_int": "MC",
"Rayleigh_min": 0.95,
}


@pytest.mark.parametrize("conf_int", ["none", "linear", "MC"])
def test_order(conf_int):

orders = [None, "PE", "frequency", opts0["constit"]]
if conf_int != "none":
orders.append("SNR")
elevs = []
ts_elevs = []
vels = []
ts_vels = []
for order in orders:
opts = opts0.copy()
opts["order_constit"] = order
opts["conf_int"] = conf_int
elevs.append(solve(time, time_series, lat=45, **opts))
vels.append(solve(time, time_series, time_series, lat=45, **opts))
ts_elevs.append(reconstruct(time, elevs[-1], min_SNR=0))
ts_vels.append(reconstruct(time, vels[-1], min_SNR=0))

# Are the reconstructions all the same?
for i in range(1, len(elevs)):
assert (ts_elevs[i].h == ts_elevs[0].h).all()
assert (ts_vels[i].u == ts_vels[0].u).all()
assert (ts_vels[i].v == ts_vels[0].v).all()

# Is None equivalent to "PE"? (Just a spot check.)
assert (elevs[0].name == elevs[1].name).all()
assert (elevs[0].A == elevs[1].A).all()


def test_invalid_snr():
opts = opts0.copy()
opts["conf_int"] = "none"
opts["order_constit"] = "SNR"
with pytest.raises(ValueError):
solve(time, time_series, lat=45, **opts)
108 changes: 61 additions & 47 deletions utide/_solve.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,9 @@
import numpy as np

from ._time_conversion import _normalize_time
from ._ut_constants import constit_index_dict
from .confidence import _confidence
from .constituent_selection import ut_cnstitsel
from .diagnostics import ut_diagn
from .diagnostics import _PE, _SNR, ut_diagn
from .ellipse_params import ut_cs2cep
from .harmonics import ut_E
from .robustfit import robustfit
Expand All @@ -17,6 +16,7 @@

default_opts = {
"constit": "auto",
"order_constit": None,
"conf_int": "linear",
"method": "ols",
"trend": True,
Expand All @@ -37,6 +37,8 @@ def _process_opts(opts, is_2D):
newopts.update_values(strict=True, **opts)
# TODO: add more validations.
newopts.infer = validate_infer(newopts.infer, is_2D)
snr = newopts.conf_int != "none"
newopts.order_constit = validate_order_constit(newopts.order_constit, snr)

compat_opts = _translate_opts(newopts)

Expand All @@ -48,6 +50,7 @@ def _translate_opts(opts):
# Here or elsewhere, proper validation remains to be added.
oldopts = Bunch()
oldopts.cnstit = opts.constit
oldopts.ordercnstit = opts.order_constit
oldopts.infer = opts.infer # we will not use the matlab names, though

oldopts.conf_int = True
Expand Down Expand Up @@ -101,6 +104,22 @@ def validate_infer(infer, is_2D):
return infer


def validate_order_constit(arg, have_snr):
available = ["PE", "frequency"]
if have_snr:
available.append("SNR")
if arg is None:
return "PE"
if isinstance(arg, str) and arg in available:
return arg
if not isinstance(arg, str) and np.iterable(arg):
return arg # TODO: add checking of its elements
raise ValueError(
f"order_constit must be one of {available} or"
f" a sequence of constituents, not '{arg}'",
)


def solve(t, u, v=None, lat=None, **opts):
"""
Calculate amplitude, phase, confidence intervals of tidal constituents.
Expand All @@ -122,7 +141,7 @@ def solve(t, u, v=None, lat=None, **opts):
standard library `datetime` proleptic Gregorian calendar,
starting with 1 at 00:00 on January 1 of year 1; this is
the 'datenum' used by Matplotlib.
constit : {'auto', array_like}, optional
constit : {'auto', sequence}, optional
List of strings with standard letter abbreviations of
tidal constituents; or 'auto' to let the list be determined
based on the time span.
Expand Down Expand Up @@ -165,6 +184,14 @@ def solve(t, u, v=None, lat=None, **opts):
amp_ratios and phase_offsets have length N for a scalar
time series, or 2N for a vector series.
order_constit : {'PE', 'SNR', 'frequency', sequence}, optional
The default is 'PE' (percent energy) order, returning results ordered from
high energy to low.
The 'SNR' order is from high signal-to-noise ratio to low, and is
available only if `conf_int` is not 'none'. The
'frequency' order is from low to high frequency. Alternatively, a
sequence of constituent names may be supplied, typically the same list as
given in the *constit* option.
MC_n : integer, optional
Not yet implemented.
robust_kw : dict, optional
Expand Down Expand Up @@ -370,7 +397,7 @@ def _solv1(tin, uin, vin, lat, **opts):
coef.theta = np.hstack((coef.theta, theta))
coef.g = np.hstack((coef.g, g))

if opt["conf_int"] is True:
if opt["conf_int"]:
coef = _confidence(
coef,
cnstit,
Expand All @@ -392,63 +419,50 @@ def _solv1(tin, uin, vin, lat, **opts):

# Diagnostics.
if not opt["nodiagn"]:
coef, indPE = ut_diagn(coef, opt)
coef = ut_diagn(coef)
# Adds a diagn dictionary, always sorted by energy.
# This doesn't seem very useful. Let's directly add the variables
# to the base coef structure. Then they can be sorted with everything
# else.
coef["PE"] = _PE(coef)
coef["SNR"] = _SNR(coef)

# Re-order constituents.
if opt["ordercnstit"] is not None:
coef = _reorder(coef, opt)
# This might have added PE if it was not already present.

if opt["ordercnstit"] == "frq":
ind = coef["aux"]["frq"].argsort()
if opt["RunTimeDisp"]:
print("done.")

elif opt["ordercnstit"] == "snr":
if not opt["nodiagn"]:
ind = coef["diagn"]["SNR"].argsort()[::-1]
else:
if opt["twodim"]:
SNR = (coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2) / (
(coef["Lsmaj_ci"] / 1.96) ** 2 + (coef["Lsmin_ci"] / 1.96) ** 2
)
return coef

else:
SNR = (coef["A"] ** 2) / (coef["A_ci"] / 1.96) ** 2

ind = SNR.argsort()[::-1]
def _reorder(coef, opt):
if opt["ordercnstit"] == "PE":
# Default: order by decreasing energy.
if "PE" not in coef:
coef["PE"] = _PE(coef)
ind = coef["PE"].argsort()[::-1]

else:
ilist = [constit_index_dict[name] for name in opt["ordercnstit"]]
ind = np.array(ilist, dtype=int)
elif opt["ordercnstit"] == "frequency":
ind = coef["aux"]["frq"].argsort()

else: # Default: order by decreasing energy.
if not opt["nodiagn"]:
ind = indPE
else:
if opt["twodim"]:
PE = np.sum(coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2)
PE = 100 * (coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2) / PE
else:
PE = 100 * coef["A"] ** 2 / np.sum(coef["A"] ** 2)

ind = PE.argsort()[::-1]

reorderlist = ["g", "name"]
if opt.twodim:
reorderlist.extend(["Lsmaj", "Lsmin", "theta"])
if opt.conf_int:
reorderlist.extend(["Lsmaj_ci", "Lsmin_ci", "theta_ci", "g_ci"])
elif opt["ordercnstit"] == "SNR":
# If we are here, we should be guaranteed to have SNR already.
ind = coef["SNR"].argsort()[::-1]
else:
reorderlist.append("A")
if opt.conf_int:
reorderlist.extend(["A_ci", "g_ci"])
namelist = list(coef["name"])
ilist = [namelist.index(name) for name in opt["ordercnstit"]]
ind = np.array(ilist, dtype=int)

arrays = "name PE SNR A A_ci g g_ci Lsmaj Lsmaj_ci Lsmin Lsmin_ci theta theta_ci"
reorderlist = [a for a in arrays.split() if a in coef]

for key in reorderlist:
coef[key] = coef[key][ind]

coef["aux"]["frq"] = coef["aux"]["frq"][ind]
coef["aux"]["lind"] = coef["aux"]["lind"][ind]

if opt["RunTimeDisp"]:
print("done.")

return coef


Expand Down Expand Up @@ -532,7 +546,7 @@ def _slvinit(tin, uin, vin, lat, **opts):
opt["rmin"] = 1
opt["method"] = "ols"
opt["tunrdn"] = 1
opt["linci"] = 0
opt["linci"] = False
opt["white"] = 0
opt["nrlzn"] = 200
opt["lsfrqosmp"] = 1
Expand Down
68 changes: 27 additions & 41 deletions utide/diagnostics.py
Original file line number Diff line number Diff line change
@@ -1,58 +1,44 @@
import numpy as np


def ut_diagn(coef, opt):

if opt["RunTimeDisp"]:
print("diagnostics ... ", end="")
coef["diagn"] = {}
def _PE(coef):
"""
Return the energy percentage for each constituent.
"""
if "Lsmaj" in coef:
E = coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2
PE = (100 / np.sum(E)) * E
else:
PE = 100 * coef["A"] ** 2 / np.sum(coef["A"] ** 2)
return PE

if opt["twodim"]:
PE = np.sum(coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2)
PE = 100 * (coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2) / PE

def _SNR(coef):
"""
Return the signal-to-noise ratio for each constituent.
"""
if "Lsmaj" in coef:
SNR = (coef["Lsmaj"] ** 2 + coef["Lsmin"] ** 2) / (
(coef["Lsmaj_ci"] / 1.96) ** 2 + (coef["Lsmin_ci"] / 1.96) ** 2
)

else:
PE = 100 * coef["A"] ** 2 / np.sum(coef["A"] ** 2)
SNR = (coef["A"] ** 2) / (coef["A_ci"] / 1.96) ** 2
return SNR


def ut_diagn(coef):
"""
Add to coef the names, PE, and SNR, *always* sorted by energy.
To be eliminated...
"""
coef["diagn"] = {}
PE = _PE(coef)
SNR = _SNR(coef)
indPE = PE.argsort()[::-1]

coef["diagn"]["name"] = coef["name"][indPE]
coef["diagn"]["PE"] = PE[indPE]
coef["diagn"]["SNR"] = SNR[indPE]

return coef, indPE


# [~,indPE] = sort(PE,'descend');
# coef.diagn.name = coef.name(indPE);
# coef.diagn.PE = PE(indPE);
# coef.diagn.SNR = SNR; % used in ut_diagntable; ordered by PE there
# if opt.twodim
# [coef.diagn,usnrc,vsnrc] = ut_diagntable(coef,cnstit,...
# t,u,v,xmod,m,B,W,varMSM,Gall,Hall,elor,varcov_mCw,indPE);
# else
# [coef.diagn,usnrc,~] = ut_diagntable(coef,cnstit,...
# t,u,[],xmod,m,B,W,varMSM,Gall,Hall,elor,varcov_mCw,indPE);
# end
# if opt.diagnplots
# tmp = nan*ones(size(uin));
# tmp(uvgd) = usnrc;
# usnrc = tmp;
# tmp = nan*ones(size(uin));
# tmp(uvgd) = e;
# e = tmp;
# if opt.twodim
# tmp = nan*ones(size(uin));
# tmp(uvgd) = vsnrc;
# vsnrc = tmp;
# ut_diagnfigs(coef,indPE,tin,uin,vin,usnrc,vsnrc,e);
# else
# ut_diagnfigs(coef,indPE,tin,uin,[],usnrc,[],e);
# end
# end
# end
return coef

0 comments on commit ef3d445

Please sign in to comment.