Skip to content

pgspider/influxdb_fdw

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InfluxDB Foreign Data Wrapper for PostgreSQL

This is a foreign data wrapper (FDW) to connect PostgreSQL to InfluxDB database file. This FDW works with PostgreSQL 13, 14, 15, 16, 17 and confirmed with

PostgreSQL + InfluxDB

Contents

  1. Features
  2. Supported platforms
  3. Installation
  4. Usage
  5. Functions
  6. Identifier case handling
  7. Generated columns
  8. Character set handling
  9. Examples
  10. Limitations
  11. Contributing
  12. Useful links
  13. License

Features

Common features

  • InfluxDB FDW supports INSERT, DELETE statements.
    • time and time_text column can used for INSERT, DELETE statements.
    • time column can express timestamp with precision down to microseconds.
    • time_text column can express timestamp with precision down to nanoseconds.
  • InfluxDB FDW supports bulk INSERT by using batch_size option (with PostgreSQL 14+).

GROUP BY time intervals and fill()

Support GROUP BY times() fill() syntax for InfluxDB. The fill() is supported by two stub function:

  • influx_fill_numeric(): use with numeric parameter for example: 100, 100.1111
  • influx_fill_option(): use with specified option such as: none, null, linear, previous.

The influx_fill_numeric() and influx_fill_option() is embeded as last parameter of time() function. The table below illustrates the usage:

PostgreSQL syntax Influxdb Syntax
influx_time(time, interval '2h') time(2h)
influx_time(time, interval '2h', interval '1h') time(2h, 1h)
influx_time(time, interval '2h', influx_fill_numeric(100)) time(2h) fill(100)
influx_time(time, interval '2h', influx_fill_option('linear')) time(2h) fill(linear)
influx_time(time, interval '2h', interval '1h', influx_fill_numeric(100)) time(2h, 1h) fill(100)
influx_time(time, interval '2h', interval '1h', influx_fill_option('linear')) time(2h,1h) fill(linear)

Schemaless feature

  • The feature enables user to utilize schema-less feature of InfluxDB, enabled by setting special options.
  • For example, without schemaless feature if a tag-key or field-key is added to InfluxDB measurement, user have to create corresponding foreign table in PostgreSQL. This feature eliminates this re-creation of foreign table.

Columns of foreign table in schemaless mode

  • The columns are fixed with names and types as below:

      (time timestamp with time zone, tags jsonb, fields jsonb)
    
  • The tag and/or field keys of InfluxDB are represented by key-value column in PostgreSQL's jsonb type.

  • The columns are created with tags or fields foreign column options:

    • tags true indicates this column as containing values of tags in InfluxDB measurement.
    • fields true indicates this column as containing values of fields in InfluxDB measurement.
  • Creation of foreign table in schemaless mode, for example:

    -- Create foreign table
      CREATE FOREIGN TABLE sc1(
        time timestamp with time zone,
            tags jsonb OPTIONS(tags 'true'),
            fields jsonb OPTIONS (fields 'true')
      )
      SERVER influxdb_svr
      OPTIONS (
        table 'sc1',
            tags 'device_id',
            schemaless 'true'
      );
    -- import foreign schema
      IMPORT FOREIGN SCHEMA public
      FROM SERVER influxdb_svr
      INTO public
      OPTIONS (
            schemaless 'true'
          );

Querying foreign tables:

  • Initialize data in InfluxDB.

    sc1,device_id=dev1 sig1=1i,sig2="a",sig3=1.1,sig4=true 0
    sc1,device_id=dev2 sig1=2i,sig2="b",sig3=1.2,sig4=false 0
    sc1,device_id=dev3 sig1=3i,sig2="c",sig3=1.3,sig4=false 0
    sc1,device_id=dev1 sig1=4i,sig2="d",sig3=2.4,sig4=true 1
    sc1,device_id=dev2 sig1=5i,sig2="e",sig3=2.5,sig4=false 1
    sc1,device_id=dev3 sig1=6i,sig2="f",sig3=2.6,sig4=false 1
    sc1,device_id=dev1 sig1=7i,sig2="g",sig3=3.7,sig4=true 2
    sc1,device_id=dev2 sig1=8i,sig2="h",sig3=3.8,sig4=false 2
    sc1,device_id=dev3 sig1=9i,sig2="i",sig3=3.9,sig4=false 2
    
  • Get data through schemaless foreign table:

    EXPLAIN VERBOSE
    SELECT * FROM sc1;
                                QUERY PLAN
    --------------------------------------------------------------------
    Foreign Scan on public.sc1  (cost=10.00..853.00 rows=853 width=72)
      Output: "time", tags, fields
      InfluxDB query: SELECT * FROM "sc1"
    (3 rows)
    
    SELECT * FROM sc1;
              time          |         tags          |                           fields
    ------------------------+-----------------------+------------------------------------------------------------
    1970-01-01 09:00:00+09 | {"device_id": "dev1"} | {"sig1": "1", "sig2": "a", "sig3": "1.1", "sig4": "true"}
    1970-01-01 09:00:00+09 | {"device_id": "dev2"} | {"sig1": "2", "sig2": "b", "sig3": "1.2", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev3"} | {"sig1": "3", "sig2": "c", "sig3": "1.3", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev1"} | {"sig1": "4", "sig2": "d", "sig3": "2.4", "sig4": "true"}
    1970-01-01 09:00:00+09 | {"device_id": "dev2"} | {"sig1": "5", "sig2": "e", "sig3": "2.5", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev3"} | {"sig1": "6", "sig2": "f", "sig3": "2.6", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev1"} | {"sig1": "7", "sig2": "g", "sig3": "3.7", "sig4": "true"}
    1970-01-01 09:00:00+09 | {"device_id": "dev2"} | {"sig1": "8", "sig2": "h", "sig3": "3.8", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev3"} | {"sig1": "9", "sig2": "i", "sig3": "3.9", "sig4": "false"}
    (9 rows)

Fetch values in jsonb expression:

  • Using ->> jsonb arrow operator to fetch actual remote InfluxDB tag or fields keys from foreign schemaless columns. User may cast type of the jsonb expression to get corresponding data representation.
  • For example, fields->>'sig1' expression of fetch value sig1 is actual field key sig1 in remote data source InfluxDB.
  • The jsonb expression can be pushed down in WHERE, GROUP BY, ORDER BY and aggregation.

For examples:

  • Fetch all column based on all actual columns:

    EXPLAIN VERBOSE
    SELECT time,tags->>'device_id' device_id,(fields->>'sig1')::bigint sig1,fields->>'sig2' sig2,(fields->>'sig3')::double precision sig3,(fields->>'sig4')::boolean sig4 FROM sc1;
                                                                                                QUERY PLAN                                                                                              
    -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    Foreign Scan on public.sc1  (cost=10.00..876.46 rows=853 width=89)
      Output: "time", (tags ->> 'device_id'::text), ((fields ->> 'sig1'::text))::bigint, (fields ->> 'sig2'::text), ((fields ->> 'sig3'::text))::double precision, ((fields ->> 'sig4'::text))::boolean
      InfluxDB query: SELECT "device_id", "sig1", "sig2", "sig3", "sig4" FROM "sc1"
    (3 rows)
    
    SELECT time,tags->>'device_id' device_id,(fields->>'sig1')::bigint sig1,fields->>'sig2' sig2,(fields->>'sig3')::double precision sig3,(fields->>'sig4')::boolean sig4 FROM sc1;
              time          | device_id | sig1 | sig2 | sig3 | sig4 
    ------------------------+-----------+------+------+------+------
    1970-01-01 09:00:00+09 | dev1      |    1 | a    |  1.1 | t
    1970-01-01 09:00:00+09 | dev2      |    2 | b    |  1.2 | f
    1970-01-01 09:00:00+09 | dev3      |    3 | c    |  1.3 | f
    1970-01-01 09:00:00+09 | dev1      |    4 | d    |  2.4 | t
    1970-01-01 09:00:00+09 | dev2      |    5 | e    |  2.5 | f
    1970-01-01 09:00:00+09 | dev3      |    6 | f    |  2.6 | f
    1970-01-01 09:00:00+09 | dev1      |    7 | g    |  3.7 | t
    1970-01-01 09:00:00+09 | dev2      |    8 | h    |  3.8 | f
    1970-01-01 09:00:00+09 | dev3      |    9 | i    |  3.9 | f
    (9 rows)
  • jsonb expression is pushed down in WHERE.

    EXPLAIN VERBOSE
    SELECT * FROM sc1 WHERE (fields->>'sig3')::double precision > 2;
                                QUERY PLAN
    --------------------------------------------------------------------
    Foreign Scan on public.sc1  (cost=10.00..284.00 rows=284 width=72)
      Output: "time", tags, fields
      InfluxDB query: SELECT * FROM "sc1" WHERE (("sig3" > 2))
    (3 rows)
    
    SELECT * FROM sc1 WHERE (fields->>'sig3')::double precision > 2;
              time          |         tags          |                           fields
    ------------------------+-----------------------+------------------------------------------------------------
    1970-01-01 09:00:00+09 | {"device_id": "dev1"} | {"sig1": "4", "sig2": "d", "sig3": "2.4", "sig4": "true"}
    1970-01-01 09:00:00+09 | {"device_id": "dev2"} | {"sig1": "5", "sig2": "e", "sig3": "2.5", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev3"} | {"sig1": "6", "sig2": "f", "sig3": "2.6", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev1"} | {"sig1": "7", "sig2": "g", "sig3": "3.7", "sig4": "true"}
    1970-01-01 09:00:00+09 | {"device_id": "dev2"} | {"sig1": "8", "sig2": "h", "sig3": "3.8", "sig4": "false"}
    1970-01-01 09:00:00+09 | {"device_id": "dev3"} | {"sig1": "9", "sig2": "i", "sig3": "3.9", "sig4": "false"}
    (6 rows)
  • jsonb expression is pushed down in aggregate sum (remote) + tag + group by

    EXPLAIN VERBOSE
    SELECT sum((fields->>'sig1')::bigint),tags->>'device_id' device_id FROM sc1 GROUP BY tags->>'device_id';
                                          QUERY PLAN
    --------------------------------------------------------------------------------------
    Foreign Scan  (cost=1.00..1.00 rows=1 width=64)
      Output: (sum(((fields ->> 'sig1'::text))::bigint)), ((tags ->> 'device_id'::text))
      InfluxDB query: SELECT sum("sig1") FROM "sc1" GROUP BY ("device_id")
    (3 rows)
    
    SELECT sum((fields->>'sig1')::bigint),tags->>'device_id' device_id FROM sc1 GROUP BY tags->>'device_id';
    sum | device_id
    -----+-----------
      12 | dev1
      15 | dev2
      18 | dev3
    (3 rows)

Pushdowning

  • WHERE clauses including timestamp, interval and now() functions.
  • Some of aggregate functions: count, stddev, sum, max, min.
  • LIMIT...OFFSET clauses when there is LIMIT clause only or both LIMIT and OFFSET.
  • DISTINCT argument for only count clause.
  • ANY ARRAY.

Notes about features

The existence of NULL values depends on the target list in remote query in InfluxDB

  • If specific field keys are selected, InfluxDB does not return NULL values for any row that has NULL value.
  • In InfluxDB, SELECT tag_keys - selecting only tag keys does not return values, so some field keys are required to be selected. Current implementation of non-schemaless need arbitrary on field key added to remote select query. And this is a limitation of current influxdb_fdw, e.g. remote query: SELECT tag_keys, field_key. Even though the field key has NULL values, this InfluxDB query does not return NULL values.
  • If all field key is selected by SELECT * in remote query, NULL values are returned by InfluxDB.

For example:

  • Initialize data: 8 records are inserted.
  CREATE FOREIGN TABLE J2_TBL (
    i integer,
    k integer
  ) SERVER influxdb_svr;

  -- Insert data with some null values
  INSERT INTO J2_TBL VALUES (1, -1);
  INSERT INTO J2_TBL VALUES (2, 2);
  INSERT INTO J2_TBL VALUES (3, -3);
  INSERT INTO J2_TBL VALUES (2, 4);
  INSERT INTO J2_TBL VALUES (5, -5);
  INSERT INTO J2_TBL VALUES (5, -5);
  INSERT INTO J2_TBL VALUES (0, NULL);
  INSERT INTO J2_TBL VALUES (NULL, 0);
  • Query in InfluxDB server by selecting specific field keys: 7 records are returned without null value.
  SELECT k FROM j2_tbl;
  name: j2_tbl
  time k
  ---- -
  1    -1
  2    2
  3    -3
  4    4
  5    -5
  6    -5
  10   0
  • Query in InfluxDB server by selecting all field key: 8 records are returned with null value.
  SELECT * FROM j2_tbl;
  name: j2_tbl
  time i k
  ---- - -
  1    1 -1
  2    2 2
  3    3 -3
  4    2 4
  5    5 -5
  6    5 -5
  7    0
  10     0

The targets list contains both functions and fields schemaless jsonb column

  • If the targets list contains both functions and fields schemaless jsonb column, the function is not pushed down.
  • For examples, if the target list contains:
    • fields, fields->>'c2', sqrt((fields->>'c1')::int): function sqrt() is not pushed down.
    • fields, sqrt((fields->>'c1')::int): function sqrt() is not pushed down.
    • fields->>'c2', sqrt((fields->>'c1')::int): there is no fields jsonb column, so function sqrt() is pushed down.

Also see Limitations.

Time operator support for both schemaless and non-schemaless

  • (1) For comparison between time key column with time constant, time param, now() function, time expression with now() function, InfluxDB FDW pushes down the following operators: =, <, >, >=, <=.
  • (2) For comparsion between tags/fields column with tags/fields, time constant, time param, InfluxDB FDW pushes down the operator =, !=, <>.
  • (3) For comparison with time key column, InfluxDB FDW does not push down != and <>.
  • (4) For comparison between interval and interval, InfluxDB FDW does not pushdown.
  • (5) For comparison with time function which is not now(), InfluxDB FDW does not pushdown
  • (6) For comparison between time key and time column, InfluxDB FDW does not pushdown the folowing operators <, >, <=, >=, =.
  • (7) For comparison between tags/fields with tags/fields, time constant, time param, InfluxDB FDW does not pushdown the operators <, >, <=, >=.
  • (8) For comparison between time expression time +/- interval with time (not time key), InfluxDB FDW does not pushdown.
  • (9) For comparison between time expression time column +/- interval, param +/- interval with time key, InfluxDB FDW does not pushdown

For example:

  • Create a foreign table with all types of time column that InfluxDB FDW supports now. The examples below show examples for each points in non-schemaless, please refer to the test for more test cases of both schemaless and non-schemaless.
CREATE FOREIGN TABLE tmp_time (
time timestamp,
c1 time,
c2 timestamp,
c3 timestamp with time zone,
agvState character varying NULL COLLATE pg_catalog."default",
value numeric NULL
) SERVER server1 OPTIONS (table 'tmp_time');

INSERT INTO tmp_time (time, c1, agvState, value) VALUES ('1900-01-01 01:01:01', '01:02:03', 'state 1', 0.1);
INSERT INTO tmp_time (time, c1, agvState, value) VALUES ('2100-01-01 01:01:01', '04:05:06', 'state 2', 0.2);
INSERT INTO tmp_time (time, c1, agvState, value) VALUES ('1990-01-01 01:01:01', '07:08:09', 'state 3', 0.3);
INSERT INTO tmp_time (time, c2) VALUES ('2020-12-27 03:02:56.634467', '1950-02-02 02:02:02');
INSERT INTO tmp_time (time, c3, agvState, value) VALUES ('2021-12-27 03:02:56.668301', '1800-02-02 02:02:02+9', 'state 5', 0.5);
INSERT INTO tmp_time (time, c1, c2, c3, agvState, value) VALUES ('2022-05-06 07:08:09', '07:08:09', '2022-05-06 07:08:09', '2022-05-06 07:08:09+9', 'state 6', 0.6);
INSERT INTO tmp_time (time, c1, c2, c3, agvState, value) VALUES ('2023-05-06 07:08:09', '07:08:10', '2023-05-06 07:08:09', '2023-05-06 07:08:09+9', 'state 7', 0.7);
INSERT INTO tmp_time (time, c1, c2, c3, c4, c5, agvState, value) VALUES ('2023-05-06 07:08:09', '07:08:10', '2023-05-06 07:08:09', '2023-05-06 07:08:09+9', '2023-05-06 08:08:09', '2023-05-06 08:08:09+9', 'state 8', 0.8);
INSERT INTO tmp_time (time, c1, c2, c3, c4, c5, agvState, value) VALUES ('2025-05-06 07:08:09', '07:08:10', '2025-05-06 07:08:09', '2025-05-06 07:08:09+9', '2025-05-06 08:08:09', '2025-05-06 08:08:09+9', 'state 9', 0.9);
  • Example for point (1):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE time > '2022-05-06 07:08:09';
                                                      QUERY PLAN                                                       
-----------------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..227.00 rows=227 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time" WHERE ((time > '2022-05-06 07:08:09'))
(3 rows)

SELECT * FROM tmp_time WHERE time > '2022-05-06 07:08:09';
        time         |    c1    |         c2          |           c3           | agvstate | value 
---------------------+----------+---------------------+------------------------+----------+-------
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | state 7  |   0.7
 2100-01-01 01:01:01 | 04:05:06 |                     |                        | state 2  |   0.2
(2 rows)
  • Example for point (2):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE c2 > '1950-02-02 02:02:02';
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..227.00 rows=227 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   Filter: (tmp_time.c2 > '1950-02-02 02:02:02'::timestamp without time zone)
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE c2 > '1950-02-02 02:02:02';
        time         |    c1    |         c2          |           c3           | agvstate | value 
---------------------+----------+---------------------+------------------------+----------+-------
 2022-05-06 07:08:09 | 07:08:09 | 2022-05-06 07:08:09 | 2022-05-06 07:08:09+09 | state 6  |   0.6
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | state 7  |   0.7
(2 rows)

EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE c2 = '2022-05-06 07:08:09';
                                                      QUERY PLAN                                                       
-----------------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..3.00 rows=3 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time" WHERE (("c2" = '2022-05-06 07:08:09'))
(3 rows)

SELECT * FROM tmp_time WHERE c2 = '2022-05-06 07:08:09';
        time         |    c1    |         c2          |           c3           | agvstate | value 
---------------------+----------+---------------------+------------------------+----------+-------
 2022-05-06 07:08:09 | 07:08:09 | 2022-05-06 07:08:09 | 2022-05-06 07:08:09+09 | state 6  |   0.6
(1 row)
  • Example for point (3):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE time != '2022-05-06 07:08:09';
                                    QUERY PLAN                                     
-----------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..679.00 rows=679 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   Filter: (tmp_time."time" <> '2022-05-06 07:08:09'::timestamp without time zone)
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE time != '2022-05-06 07:08:09';
            time            |    c1    |         c2          |              c3              | agvstate | value 
----------------------------+----------+---------------------+------------------------------+----------+-------
 1900-01-01 01:01:01        | 01:02:03 |                     |                              | state 1  |   0.1
 1990-01-01 01:01:01        | 07:08:09 |                     |                              | state 3  |   0.3
 2020-12-27 03:02:56.634467 |          | 1950-02-02 02:02:02 |                              |          |      
 2021-12-27 03:02:56.668301 |          |                     | 1800-02-02 02:21:01+09:18:59 | state 5  |   0.5
 2023-05-06 07:08:09        | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09       | state 7  |   0.7
 2100-01-01 01:01:01        | 04:05:06 |                     |                              | state 2  |   0.2
(6 rows)
  • Example for point (4):
-- Does not push down time subtraction time - time vs interval
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE time - c2 <= interval '1d';
                                   QUERY PLAN                                   
--------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..227.00 rows=227 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   Filter: ((tmp_time."time" - tmp_time.c2) <= '@ 1 day'::interval)
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE time - c2 <= interval '1d';
        time         |    c1    |         c2          |           c3           | agvstate | value 
---------------------+----------+---------------------+------------------------+----------+-------
 2022-05-06 07:08:09 | 07:08:09 | 2022-05-06 07:08:09 | 2022-05-06 07:08:09+09 | state 6  |   0.6
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | state 7  |   0.7
(2 rows)

-- Does not push down nested time subtraction
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE (time - c2) - (c1 - c1) > interval '-1d';
                                              QUERY PLAN                                               
-------------------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..227.00 rows=227 width=96)
   Output: "time", c1, c2, c3, agvstate, value
   Filter: (((tmp_time."time" - tmp_time.c2) - (tmp_time.c1 - tmp_time.c1)) > '@ 1 day ago'::interval)
   InfluxDB query: SELECT "c1", "c2", "c3", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE (time - c2) - (c1 - c1) > interval '-1d';
        time         |    c1    |         c2          |           c3           | agvstate | value 
---------------------+----------+---------------------+------------------------+----------+-------
 2022-05-06 07:08:09 | 07:08:09 | 2022-05-06 07:08:09 | 2022-05-06 07:08:09+09 | state 6  |   0.6
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | state 7  |   0.7
(2 rows)
  • Example for point (5):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE influx_time(time, interval '3m') - interval '3m' < time;
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..201.00 rows=201 width=112)
   Output: "time", c1, c2, c3, c4, c5, agvstate, value
   Filter: ((influx_time(tmp_time."time", '@ 3 mins'::interval) - '@ 3 mins'::interval) < tmp_time."time")
   InfluxDB query: SELECT "c1", "c2", "c3", "c4", "c5", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE influx_time(time, interval '3m') - interval '3m' < time;
ERROR:  stub influx_time(timestamp with time zone, interval) is called
CONTEXT:  PL/pgSQL function influx_time(timestamp with time zone,interval) line 3 at RAISE
  • Example for point (6):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE time = c2;
                                         QUERY PLAN                                         
--------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..3.00 rows=3 width=112)
   Output: "time", c1, c2, c3, c4, c5, agvstate, value
   Filter: (tmp_time."time" = tmp_time.c2)
   InfluxDB query: SELECT "c1", "c2", "c3", "c4", "c5", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE time = c2;
        time         |    c1    |         c2          |           c3           |         c4          |           c5           | agvstate | value 
---------------------+----------+---------------------+------------------------+---------------------+------------------------+----------+-------
 2022-05-06 07:08:09 | 07:08:09 | 2022-05-06 07:08:09 | 2022-05-06 07:08:09+09 |                     |                        | state 6  |   0.6
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | 2023-05-06 08:08:09 | 2023-05-06 08:08:09+09 | state 8  |   0.8
 2025-05-06 07:08:09 | 07:08:10 | 2025-05-06 07:08:09 | 2025-05-06 07:08:09+09 | 2025-05-06 08:08:09 | 2025-05-06 08:08:09+09 | state 9  |   0.9
(3 rows)
  • Example for point (7):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE c2 < c4;
                                         QUERY PLAN                                         
--------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..201.00 rows=201 width=112)
   Output: "time", c1, c2, c3, c4, c5, agvstate, value
   Filter: (tmp_time.c2 < tmp_time.c4)
   InfluxDB query: SELECT "c1", "c2", "c3", "c4", "c5", "agvstate", "value" FROM "tmp_time"
(4 rows)

--Testcase 471:
SELECT * FROM tmp_time WHERE c2 < c4;
        time         |    c1    |         c2          |           c3           |         c4          |           c5           | agvstate | value 
---------------------+----------+---------------------+------------------------+---------------------+------------------------+----------+-------
 2023-05-06 07:08:09 | 07:08:10 | 2023-05-06 07:08:09 | 2023-05-06 07:08:09+09 | 2023-05-06 08:08:09 | 2023-05-06 08:08:09+09 | state 8  |   0.8
 2025-05-06 07:08:09 | 07:08:10 | 2025-05-06 07:08:09 | 2025-05-06 07:08:09+09 | 2025-05-06 08:08:09 | 2025-05-06 08:08:09+09 | state 9  |   0.9
(2 rows)
  • Example for point (8):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE (time + interval '1d') > now() + interval '-1d';
                                         QUERY PLAN                                         
--------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..201.00 rows=201 width=112)
   Output: "time", c1, c2, c3, c4, c5, agvstate, value
   Filter: ((tmp_time."time" + '@ 1 day'::interval) > (now() + '@ 1 day ago'::interval))
   InfluxDB query: SELECT "c1", "c2", "c3", "c4", "c5", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE (time + interval '1d') > now() + interval '-1d';
        time         |    c1    |         c2          |           c3           |         c4          |           c5           | agvstate | value 
---------------------+----------+---------------------+------------------------+---------------------+------------------------+----------+-------
 2025-05-06 07:08:09 | 07:08:10 | 2025-05-06 07:08:09 | 2025-05-06 07:08:09+09 | 2025-05-06 08:08:09 | 2025-05-06 08:08:09+09 | state 9  |   0.9
 2100-01-01 01:01:01 | 04:05:06 |                     |                        |                     |                        | state 2  |   0.2
(2 rows)
  • Example for point (9):
EXPLAIN VERBOSE
SELECT * FROM tmp_time WHERE time = c2 + interval '25896 days 01:00:54.634467';
                                          QUERY PLAN                                          
----------------------------------------------------------------------------------------------
 Foreign Scan on public.tmp_time  (cost=10.00..3.00 rows=3 width=112)
   Output: "time", c1, c2, c3, c4, c5, agvstate, value
   Filter: (tmp_time."time" = (tmp_time.c2 + '@ 25896 days 1 hour 54.634467 secs'::interval))
   InfluxDB query: SELECT "c1", "c2", "c3", "c4", "c5", "agvstate", "value" FROM "tmp_time"
(4 rows)

SELECT * FROM tmp_time WHERE time = c2 + interval '25896 days 01:00:54.634467';
            time            | c1 |         c2          | c3 | c4 | c5 | agvstate | value 
----------------------------+----+---------------------+----+----+----+----------+-------
 2020-12-27 03:02:56.634467 |    | 1950-02-02 02:02:02 |    |    |    |          |      
(1 row)

Pattern Matching

InfluxDB FDW supports pattern matching by using LIKE and Regular Expression (Regex) operator in WHERE clause.
The following operators are used:
(1) LIKE or ~~: Check if a value matches a LIKE pattern (case sensitive)
(2) NOT LIKE or !~~: Check if a value does not match a LIKE pattern (case sensitive)
(3) ILIKE or ~~*: Check if a value matches a LIKE pattern (case insensitive)
(4) NOT ILIKE or !~~*: Check if a value does not match a LIKE pattern (case insensitive)
(5) ~: Check if a value matches a Regex pattern (case sensitive)
(6) !~: Check if a value does not match a Regex pattern (case sensitive)
(7) ~*: Check if a value matches a Regex pattern (case insensitive)
(8) !~*: Check if a value does not match a Regex pattern (case insensitive)

For example,

(1) LIKE operator (case sensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor LIKE 'A%';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /^A(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor LIKE 'A%';
             time              | device | line | sensor | value 
-------------------------------+--------+------+--------+-------
 2024-10-18 14:44:24.297985+09 | D01    | L01  | A32    |     1
 2024-10-18 14:44:24.319444+09 | D02    | L02  | A31    |     2
 2024-10-18 14:44:24.325517+09 | D03    | L03  | Alarm  |     3
(3 rows)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor LIKE '_PS5A_PS2_';
                                                           QUERY PLAN                                                           
--------------------------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /^(.{1})PS5A(.{1})PS2(.{1})$/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor LIKE '_PS5A_PS2_';
             time              | device | line |   sensor   | value 
-------------------------------+--------+------+------------+-------
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$ |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_ |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2% |     9
(3 rows)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor LIKE '\_PS5A\_PS2\_';
                                                   QUERY PLAN                                                    
-----------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /^_PS5A_PS2_$/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor LIKE '\_PS5A\_PS2\_';
             time              | device | line |   sensor   | value 
-------------------------------+--------+------+------------+-------
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_ |     8
(1 row)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor ~~ 'A%';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /^A(.*)/))
(3 rows)


SELECT * FROM sensor_tbl WHERE sensor ~~ 'A%';
             time              | device | line | sensor | value 
-------------------------------+--------+------+--------+-------
 2024-10-18 14:44:24.297985+09 | D01    | L01  | A32    |     1
 2024-10-18 14:44:24.319444+09 | D02    | L02  | A31    |     2
 2024-10-18 14:44:24.325517+09 | D03    | L03  | Alarm  |     3
(3 rows)

(2) NOT LIKE operator (case sensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor NOT LIKE 'A%';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" !~ /^A(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor NOT LIKE 'A%';
             time              | device | line |     sensor      | value 
-------------------------------+--------+------+-----------------+-------
 2024-10-18 14:44:24.331317+09 | D04    | L04  | PS5A_PS2        |     4
 2024-10-18 14:44:24.336539+09 | D05    | L05  | ^PS5A_PS2       |     5
 2024-10-18 14:44:24.341984+09 | D06    | L06  | PS5A_PS2$       |     6
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$      |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_      |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2%      |     9
 2024-10-18 14:44:24.368482+09 | D10    | L10  | \^$.|?aBc*+()[{ |    10
(7 rows)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor !~~ 'A%';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" !~ /^A(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor !~~ 'A%';
             time              | device | line |     sensor      | value 
-------------------------------+--------+------+-----------------+-------
 2024-10-18 14:44:24.331317+09 | D04    | L04  | PS5A_PS2        |     4
 2024-10-18 14:44:24.336539+09 | D05    | L05  | ^PS5A_PS2       |     5
 2024-10-18 14:44:24.341984+09 | D06    | L06  | PS5A_PS2$       |     6
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$      |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_      |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2%      |     9
 2024-10-18 14:44:24.368482+09 | D10    | L10  | \^$.|?aBc*+()[{ |    10
(7 rows)

(3) ILIKE operator (case insensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor ILIKE 'a3%';
                                                   QUERY PLAN                                                   
----------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /(?i)^a3(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor ILIKE 'a3%';
             time              | device | line | sensor | value 
-------------------------------+--------+------+--------+-------
 2024-10-18 14:44:24.297985+09 | D01    | L01  | A32    |     1
 2024-10-18 14:44:24.297985+09 | D11    | L11  | A32\%  |    11
 2024-10-18 14:44:24.319444+09 | D02    | L02  | A31    |     2
(3 rows)

(4) NOT ILIKE operator (case insenstive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor NOT ILIKE 'a3%';
                                                   QUERY PLAN                                                   
----------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" !~ /(?i)^a3(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor NOT ILIKE 'a3%';
             time              | device | line |     sensor      | value 
-------------------------------+--------+------+-----------------+-------
 2024-10-18 14:44:24.297988+09 | D12    | L12  | \%              |    12
 2024-10-18 14:44:24.297998+09 | D13    | L13  | %               |    13
 2024-10-18 14:44:24.325517+09 | D03    | L03  | Alarm           |     3
 2024-10-18 14:44:24.331317+09 | D04    | L04  | PS5A_PS2        |     4
 2024-10-18 14:44:24.336539+09 | D05    | L05  | ^PS5A_PS2       |     5
 2024-10-18 14:44:24.341984+09 | D06    | L06  | PS5A_PS2$       |     6
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$      |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_      |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2%      |     9
 2024-10-18 14:44:24.368482+09 | D10    | L10  | \^$.|?aBc*+()[{ |    10
(10 rows)

(5) ~ Regex match operator (case sensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor ~ '^A(.*)';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /^A(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor ~ '^A(.*)';
             time              | device | line | sensor | value 
-------------------------------+--------+------+--------+-------
 2024-10-18 14:44:24.297985+09 | D01    | L01  | A32    |     1
 2024-10-18 14:44:24.297985+09 | D11    | L11  | A32\%  |    11
 2024-10-18 14:44:24.319444+09 | D02    | L02  | A31    |     2
 2024-10-18 14:44:24.325517+09 | D03    | L03  | Alarm  |     3
(4 rows)

(6) !~ Regex not match operator (case sensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor !~ '^A(.*)';
                                                QUERY PLAN                                                 
-----------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" !~ /^A(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor !~ '^A(.*)';
             time              | device | line |     sensor      | value 
-------------------------------+--------+------+-----------------+-------
 2024-10-18 14:44:24.297988+09 | D12    | L12  | \%              |    12
 2024-10-18 14:44:24.297998+09 | D13    | L13  | %               |    13
 2024-10-18 14:44:24.331317+09 | D04    | L04  | PS5A_PS2        |     4
 2024-10-18 14:44:24.336539+09 | D05    | L05  | ^PS5A_PS2       |     5
 2024-10-18 14:44:24.341984+09 | D06    | L06  | PS5A_PS2$       |     6
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$      |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_      |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2%      |     9
 2024-10-18 14:44:24.368482+09 | D10    | L10  | \^$.|?aBc*+()[{ |    10
(9 rows)

(7) ~* Regex match operator (case insensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor ~* '^a3(.*)';
                                                   QUERY PLAN                                                   
----------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" =~ /(?i)^a3(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor ~* '^a3(.*)';
             time              | device | line | sensor | value 
-------------------------------+--------+------+--------+-------
 2024-10-18 14:44:24.297985+09 | D01    | L01  | A32    |     1
 2024-10-18 14:44:24.297985+09 | D11    | L11  | A32\%  |    11
 2024-10-18 14:44:24.319444+09 | D02    | L02  | A31    |     2
(3 rows)

(8) !~* Regex not match operator (case insensitive)

EXPLAIN (VERBOSE, COSTS OFF)
SELECT * FROM sensor_tbl WHERE sensor !~* '^a3(.*)';
                                                   QUERY PLAN                                                   
----------------------------------------------------------------------------------------------------------------
 Foreign Scan on public.sensor_tbl
   Output: "time", device, line, sensor, value
   InfluxDB query: SELECT "device", "line", "sensor", "value" FROM "sensor" WHERE (("sensor" !~ /(?i)^a3(.*)/))
(3 rows)

SELECT * FROM sensor_tbl WHERE sensor !~* '^a3(.*)';
             time              | device | line |     sensor      | value 
-------------------------------+--------+------+-----------------+-------
 2024-10-18 14:44:24.297988+09 | D12    | L12  | \%              |    12
 2024-10-18 14:44:24.297998+09 | D13    | L13  | %               |    13
 2024-10-18 14:44:24.325517+09 | D03    | L03  | Alarm           |     3
 2024-10-18 14:44:24.331317+09 | D04    | L04  | PS5A_PS2        |     4
 2024-10-18 14:44:24.336539+09 | D05    | L05  | ^PS5A_PS2       |     5
 2024-10-18 14:44:24.341984+09 | D06    | L06  | PS5A_PS2$       |     6
 2024-10-18 14:44:24.347979+09 | D07    | L07  | ^PS5A_PS2$      |     7
 2024-10-18 14:44:24.353777+09 | D08    | L08  | _PS5A_PS2_      |     8
 2024-10-18 14:44:24.361595+09 | D09    | L09  | %PS5A%PS2%      |     9
 2024-10-18 14:44:24.368482+09 | D10    | L10  | \^$.|?aBc*+()[{ |    10
(10 rows)

Supported platforms

influxdb_fdw was developed on Linux, and should run on any reasonably POSIX-compliant system.

influxdb_fdw is designed to be compatible with PostgreSQL 13 ~ 17.

Installation

Prerequisites

Influxdb_fdw supports 2 different client:

  • Go client
  • Influxdb_cxx client.

The installation for each kind of client is described as below.

Install InfluxDB Go client library

Go version should be 1.10.4 or later.

go get github.com/influxdata/influxdb1-client/v2

To use Go client, use GO_CLIENT=1 flag when compile the source code

Install Influxdb_cxx client library

Get source code from influxdb-cxx github repository and install as manual:

git clone https://github.com/pgspider/influxdb-cxx
cd influxdb-cxx
cmake .. -DINFLUXCXX_WITH_BOOST=OFF -DINFLUXCXX_TESTING=OFF
sudo make install

Update LD_LIBRARY_PATH follow the installation folder of Influxdb_cxx client

To use Influxdb_cxx, use CXX_CLIENT=1 flag when compile the source code. It is required to use gcc version 7 to build influxdb_fdw with influxdb_cxx client.

Source installation

Add a directory of pg_config to PATH and build and install influxdb_fdw. If you want to build influxdb_fdw in a source tree of PostgreSQL instead, don't use USE_PGXS=1.

Using Go client

make USE_PGXS=1 with_llvm=no GO_CLIENT=1
make install USE_PGXS=1 with_llvm=no GO_CLIENT=1

with_llvm=no is necessary to disable llvm bit code generation when PostgreSQL is configured with --with-llvm because influxdb_fdw use go code and cannot be compiled to llvm bit code.

Using Influxdb_cxx client

make USE_PGXS=1 with_llvm=no CXX_CLIENT=1
make install USE_PGXS=1 with_llvm=no CXX_CLIENT=1

Usage

CREATE SERVER options

influxdb_fdw accepts the following options via the CREATE SERVER command:

  • dbname as string, optional

Target database name.

  • host as string, optional

The address used to connect to InfluxDB server.

  • port as integer, optional

The port used to connect to InfluxDB server.

  • version as integer, optional, no default

InfluxDB server version which to connect to. If not, InfluxDB FDW will try to connect to InfluxDB V2 first. If unsuccessful, it will try to connect to InfluxDB V1. If it is still unsuccessful, error will be raised. Availlable values: 1 for InfluxDB ver 1.x and 2 for InfluxDB ver 2.x.

  • retention_policy as string, optional, default empty.

Retention policy of target database. See in InfluxDB ver 2.x documentation.

CREATE USER MAPPING options

influxdb_fdw accepts the following options via the CREATE USER MAPPING command:

  • user as string, no default

    Username for V1 basic authentication (InfluxDB ver. 1.x).

  • password as string, no default

    Password for V1 basic authentication (InfluxDB ver. 1.x).

  • auth_token as string, no default

    Token for V2 Token authentication (InfluxDB ver. 2.x).

CREATE FOREIGN TABLE options

influxdb_fdw accepts the following table-level options via the CREATE FOREIGN TABLE command.

  • tags as string, optional, no default

  • table as string, optional, no default

  • schemaless as boolean, optional, default false

    Enable schemaless mode.

IMPORT FOREIGN SCHEMA options

influxdb_fdw supports IMPORT FOREIGN SCHEMA and accepts the following options via the IMPORT FOREIGN SCHEMA command.

  • schemaless as boolean, optional, default false

    Enable schemaless mode.

TRUNCATE support

influxdb_fdw don't support the foreign data wrapper TRUNCATE API, available from PostgreSQL 14.

Functions

As well as the standard influxdb_fdw_handler() and influxdb_fdw_validator() functions, influxdb_fdw provides the following user-callable utility functions:

Listed as type, name with arguments, returm datatype where such function types are availlable:

  • vf - volatile functions
  • a - aggregations
  • sf - stable functions
  • f - simple function

Common functions

  • vf 'log2(float8)', 'float8'
  • vf 'log10(float8)', 'float8'

Special aggregations

  • a 'influx_count_all(*)', 'text'
  • a 'influx_count(text)', 'text'
  • a 'influx_distinct(anyelement)', 'anyelement'
  • a 'integral(bigint)', 'bigint'
  • a 'integral(float8)', 'float8'
  • a 'integral(bigint, interval)', 'bigint'
  • a 'integral(float8, interval)', 'float8'
  • a 'integral_all(*)', 'text'
  • a 'integral(text)', 'text'
  • a 'mean(bigint)', 'bigint'
  • a 'mean(float8)', 'float8'
  • a 'mean_all(*)', 'text'
  • a 'mean(text)', 'text'
  • a 'median(bigint)', 'bigint'
  • a 'median(float8)', 'float8'
  • a 'median_all(*)', 'text'
  • a 'median(text)', 'text'
  • a 'influx_mode(anyelement)', 'anyelement'
  • a 'influx_mode_all(*)', 'text'
  • a 'influx_mode(text)', 'text'
  • a 'spread(bigint)', 'bigint'
  • a 'spread(float8)', 'float8'
  • a 'spread_all(*)', 'text'
  • a 'spread(text)', 'text'
  • a 'stddev_all(*)', 'text'
  • a 'stddev(text)', 'text'
  • a 'influx_sum_all(*)', 'text'
  • a 'influx_sum(text)', 'text'

Selectors

  • f 'bottom(bigint, int)', 'float8'
  • f 'bottom(float8, int)', 'float8'
  • f 'bottom(bigint, text, int)', 'float8'
  • f 'bottom(float8, text, int)', 'float8'
  • a 'first(timestamp with time zone, anyelement)', 'anyelement'
  • a 'first_all(*)', 'text'
  • a 'first(text)', 'text'
  • a 'last(timestamp with time zone, anyelement)', 'anyelement'
  • a 'last_all(*)', 'text'
  • a 'last(text)', 'text'
  • a 'influx_max_all(*)', 'text'
  • a 'influx_max(text)', 'text'
  • a 'influx_min_all(*)', 'text'
  • a 'influx_min(text)', 'text'
  • f 'percentile(bigint, int)', 'float8'
  • f 'percentile(float8, int)', 'float8'
  • f 'percentile(bigint, float8)', 'float8'
  • f 'percentile(float8, float8)', 'float8'
  • sf 'percentile_all(int)', 'text'
  • sf 'percentile_all(float8)', 'text'
  • sf 'percentile(text, int)', 'text'
  • sf 'percentile(text, float8)', 'text'
  • a 'sample(anyelement, int)', 'anyelement'
  • sf 'sample_all(int)', 'text'
  • sf 'sample(text, int)', 'text'
  • f 'top(bigint, int)', 'float8'
  • f 'top(float8, int)', 'float8'
  • f 'top(bigint, text, int)', 'float8'
  • f 'top(float8, text, int)', 'float8'

Transformations

  • sf 'abs_all()', 'text'
  • sf 'acos_all()', 'text'
  • sf 'asin_all()', 'text'
  • sf 'atan_all()', 'text'
  • sf 'atan2_all(bigint)', 'text'
  • sf 'atan2_all(float8)', 'text'
  • sf 'ceil_all()', 'text'
  • sf 'cos_all()', 'text'
  • f 'cumulative_sum(bigint)', 'bigint'
  • f 'cumulative_sum(float8)', 'float8'
  • sf 'cumulative_sum_all()', 'text'
  • sf 'cumulative_sum(text)', 'text'
  • f 'derivative(anyelement)', 'anyelement'
  • f 'derivative(anyelement, interval)', 'anyelement'
  • sf 'derivative_all()', 'text'
  • sf 'derivative(text)', 'text'
  • f 'difference(bigint)', 'bigint'
  • f 'difference(float8)', 'float8'
  • sf 'difference_all()', 'text'
  • sf 'difference(text)', 'text'
  • f 'elapsed(anyelement)', 'bigint'
  • sf 'elapsed_all()', 'text'
  • sf 'elapsed(text)', 'text'
  • f 'elapsed(anyelement, interval)', 'bigint'
  • sf 'exp_all()', 'text'
  • sf 'floor_all()', 'text'
  • sf 'ln_all()', 'text'
  • sf 'log_all(bigint)', 'text'
  • sf 'log_all(float8)', 'text'
  • sf 'log2_all()', 'text'
  • sf 'log10_all()', 'text'
  • f 'moving_average(bigint, int)', 'float8'
  • f 'moving_average(float8, int)', 'float8'
  • sf 'moving_average_all(int)', 'text'
  • sf 'moving_average(text, int)', 'text'
  • f 'non_negative_derivative(anyelement)', 'anyelement'
  • f 'non_negative_derivative(anyelement, interval)', 'anyelement'
  • sf 'non_negative_derivative_all()', 'text'
  • sf 'non_negative_derivative(text)', 'text'
  • f 'non_negative_difference(bigint)', 'bigint'
  • f 'non_negative_difference(float8)', 'float8'
  • sf 'non_negative_difference_all()', 'text'
  • sf 'non_negative_difference(text)', 'text'
  • sf 'pow_all(int)', 'text'
  • sf 'round_all()', 'text'
  • sf 'sin_all()', 'text'
  • sf 'sqrt_all()', 'text'
  • sf 'tan_all()', 'text'

Predictors

  • f 'holt_winters(anyelement, int, int)', 'anyelement'
  • f 'holt_winters_with_fit(anyelement, int, int)', 'anyelement'

Technical Analysis

  • f 'chande_momentum_oscillator(bigint, int)', 'float8'
  • f 'chande_momentum_oscillator(float8, int)', 'float8'
  • f 'chande_momentum_oscillator(bigint, int, int)', 'float8'
  • f 'chande_momentum_oscillator(float8, int, int)', 'float8'
  • f 'chande_momentum_oscillator(double precision, int)', 'float8'
  • f 'chande_momentum_oscillator(double precision, int, int)', 'float8'
  • sf 'chande_momentum_oscillator_all(int)', 'text'
  • sf 'chande_momentum_oscillator(text, int)', 'text'
  • f 'exponential_moving_average(bigint, int)', 'float8'
  • f 'exponential_moving_average(float8, int)', 'float8'
  • f 'exponential_moving_average(bigint, int, int)', 'float8'
  • f 'exponential_moving_average(float8, int, int)', 'float8'
  • sf 'exponential_moving_average_all(int)', 'text'
  • sf 'exponential_moving_average(text, int)', 'text'
  • f 'double_exponential_moving_average(bigint, int)', 'float8'
  • f 'double_exponential_moving_average(float8, int)', 'float8'
  • f 'double_exponential_moving_average(bigint, int, int)', 'float8'
  • f 'double_exponential_moving_average(float8, int, int)', 'float8'
  • sf 'double_exponential_moving_average_all(int)', 'text'
  • sf 'double_exponential_moving_average(text, int)', 'text'
  • f 'kaufmans_efficiency_ratio(bigint, int)', 'float8'
  • f 'kaufmans_efficiency_ratio(float8, int)', 'float8'
  • f 'kaufmans_efficiency_ratio(bigint, int, int)', 'float8'
  • f 'kaufmans_efficiency_ratio(float8, int, int)', 'float8'
  • sf 'kaufmans_efficiency_ratio_all(int)', 'text'
  • sf 'kaufmans_efficiency_ratio(text, int)', 'text'
  • f 'kaufmans_adaptive_moving_average(bigint, int)', 'float8'
  • f 'kaufmans_adaptive_moving_average(float8, int)', 'float8'
  • f 'kaufmans_adaptive_moving_average(bigint, int, int)', 'float8'
  • f 'kaufmans_adaptive_moving_average(float8, int, int)', 'float8'
  • sf 'kaufmans_adaptive_moving_average_all(int)', 'text'
  • sf 'kaufmans_adaptive_moving_average(text, int)', 'text'
  • f 'triple_exponential_moving_average(bigint, int)', 'float8'
  • f 'triple_exponential_moving_average(float8, int)', 'float8'
  • f 'triple_exponential_moving_average(bigint, int, int)', 'float8'
  • f 'triple_exponential_moving_average(float8, int, int)', 'float8'
  • sf 'triple_exponential_moving_average_all(int)', 'text'
  • sf 'triple_exponential_moving_average(text, int)', 'text'
  • f 'triple_exponential_derivative(bigint, int)', 'float8'
  • f 'triple_exponential_derivative(float8, int)', 'float8'
  • f 'triple_exponential_derivative(bigint, int, int)', 'float8'
  • f 'triple_exponential_derivative(float8, int, int)', 'float8'
  • sf 'triple_exponential_derivative_all(int)', 'text'
  • sf 'triple_exponential_derivative(text, int)', 'text'
  • f 'relative_strength_index(bigint, int)', 'float8'
  • f 'relative_strength_index(float8, int)', 'float8'
  • f 'relative_strength_index(bigint, int, int)', 'float8'
  • f 'relative_strength_index(float8, int, int)', 'float8'
  • sf 'relative_strength_index_all(int)', 'text'
  • sf 'relative_strength_index(text, int)', 'text'

Special time functions

  • f 'influx_time(timestamp with time zone, interval, interval)', 'timestamp with time zone'
  • f 'influx_time(timestamp with time zone, interval)', 'timestamp with time zone'
  • f 'influx_time(timestamp with time zone, interval, interval, anyelement)', 'timestamp with time zone'
  • f 'influx_time(timestamp with time zone, interval, anyelement)', 'timestamp with time zone'
  • sf 'influx_fill_option(influx_fill_enum)', 'int'
  • sf 'influx_fill_numeric(float8)', 'float8'
  • sf 'influx_fill_numeric(int)', 'int'

Identifier case handling

PostgreSQL folds identifiers to lower case by default. Rules and problems with InfluxDB identifiers yet not tested and described.

Generated columns

Behavoiur within generated columns yet not tested and described.

For more details on generated columns see:

Character set handling

Yet not described. Strongly recommended to use any of Unicode encodings for PostgreSQL with influxdb_fdw.

Examples

Install the extension:

Once for a database you need, as PostgreSQL superuser.

	CREATE EXTENSION influxdb_fdw;

Create a foreign server with appropriate configuration:

Once for a foreign datasource you need, as PostgreSQL superuser. Please specify database name using dbname option.

Go Client connect to InfluxDB ver 1.x

	CREATE SERVER influxdb_svr
	FOREIGN DATA WRAPPER influxdb_fdw
	OPTIONS (
          dbname 'mydb',
	  host 'http://localhost',
	  port '8086'
	);

Influxdb_cxx Client connect to InfluxDB ver 1.x

	CREATE SERVER influxdb_svr
	FOREIGN DATA WRAPPER influxdb_fdw
	OPTIONS (
          dbname 'mydb',
	  host 'http://localhost',
	  port '8086',
	  version '1'
	);

Influxdb_cxx Client connect to InfluxDB ver 2.x

	CREATE SERVER influxdb_svr
	FOREIGN DATA WRAPPER influxdb_fdw
	OPTIONS (
          dbname 'mydb',
	  host 'http://localhost',
	  port '8086',
	  version '2',
	  retention_policy ''
	);

Grant usage on foreign server to normal user in PostgreSQL:

Once for a normal user (non-superuser) in PostgreSQL, as PostgreSQL superuser. It is a good idea to use a superuser only where really necessary, so let's allow a normal user to use the foreign server (this is not required for the example to work, but it's secirity recomedation).

	GRANT USAGE ON FOREIGN SERVER influxdb_svr TO pguser;

Where pguser is a sample user for works with foreign server (and foreign tables).

User mapping

Create an appropriate user mapping:

Go Client connect to InfluxDB ver 1.x

    	CREATE USER MAPPING
	FOR pguser
	SERVER influxdb_svr
    	OPTIONS (
	  user 'username',
	  password 'password'
	);

Where pguser is a sample user for works with foreign server (and foreign tables).

Influxdb_cxx Client connect to InfluxDB ver 1.x

    	CREATE USER MAPPING
	FOR pguser
	SERVER influxdb_svr
    	OPTIONS (
	  user 'username',
	  password 'password'
	);

Where pguser is a sample user for works with foreign server (and foreign tables).

Influxdb_cxx Client connect to InfluxDB ver 2.x

    	CREATE USER MAPPING
	FOR pguser
	SERVER influxdb_svr
    	OPTIONS (
	  auth_token 'token'
	);

Where pguser is a sample user for works with foreign server (and foreign tables).

Create foreign table

All CREATE FOREIGN TABLE SQL commands can be executed as a normal PostgreSQL user if there were correct GRANT USAGE ON FOREIGN SERVER. No need PostgreSQL supersuer for security reasons but also works with PostgreSQL supersuer.

Create a foreign table referencing the InfluxDB table: You need to declare a column named time to access InfluxDB time column.

	CREATE FOREIGN TABLE t1(
	  time timestamp with time zone,
	  tag1 text,
	  field1 integer
	)
	SERVER influxdb_svr
	OPTIONS (
	  table 'measurement1'
	);

You can use tags option to specify tag keys of a foreign table.

	CREATE FOREIGN TABLE t2(
	  tag1 text,
	  field1 integer,
	  tag2 text,
	  field2 integer
	)
	SERVER influxdb_svr
	OPTIONS (
	  tags 'tag1, tag2'
	);

You can import foreign schema

	IMPORT FOREIGN SCHEMA public
	FROM SERVER influxdb_svr
	INTO public;

Access foreign table

	SELECT * FROM t1;

Limitations

  • UPDATE is not supported.
  • WITH CHECK OPTION constraints is not supported.

Limitations originate from data model and query language of InfluxDB

  • Result sets have different number of rows depending on specified target list. For example, SELECT field1 FROM t1 and SELECT field2 FROM t1 returns different number of rows if the number of points with field1 and field2 are different in InfluxDB database.
  • Timestamp precision may be lost because timestamp resolution of PostgreSQL is microseconds while that of InfluxDB is nanoseconds.
  • Conditions like WHERE time + interval '1 day' < now() do not work. Please use WHERE time < now() - interval '1 day'.
  • InfluxDB FDW does not return an error even if it is overflow.
  • EXP function of InfluxDB may return different precision number for different PC.
  • InfluxDB only supports some basic types for tags (string only) and fields (string, float, integer or boolean) => most Postgres types cannot be supported.
  • IMPORT FOREIGN SCHEMA should be used to identify foreign tables.
    • If the user defines it manually, it is necessary to use the correct mapping type in the foreign table to avoid some unexpected behavior because of type mismatch or unsupported in InfluxDB.
    • If a user wants to use an unsupported type with InfluxDB data, PostgreSQL's explicit cast functions should be used instead of define column type in foreign table directly.
  • For pattern matching, Regex pattern of Postgres and InfluxDB has some differences. For example,
    • Postgres supports patterns \m, \M but InfluxDB does not.
    • InfluxDB supports patterns (?U) ungreedy, \Q...\E but Postgres does not. If Postgres detects invalid pattern, it will report error. Otherwise, FDW will push down the pattern to InfluxDB. If InfluxDB detects invalid pattern, it will report error. Otherwise, it will search data matching the pattern and return result to user.

When a query to foreign tables fails, you can find why it fails by seeing a query executed in InfluxDB with EXPLAIN VERBOSE.

Contributing

Opening issues and pull requests on GitHub are welcome. Test scripts is multiversional for PostgreSQL, works in POSIX context and based on comparing output of SQL commands in psql with expected output text files. Current test expected results are generated based on results in Rocky Linux 8 and its default glibc 2.28. Test results may fail with other version of glibc with the following cases.

  • Different order of records due to string collation changes
  • Minor change of float number after decimal point due to different floating point calculation

Useful links

Source code

Reference FDW realisation, postgres_fdw

General FDW Documentation

Other FDWs

License

Copyright (c) 2018, TOSHIBA CORPORATION

Copyright (c) 2011-2016, EnterpriseDB Corporation

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

See the LICENSE file for full details.