-
Notifications
You must be signed in to change notification settings - Fork 73
/
deep_emotion.py
67 lines (54 loc) · 1.8 KB
/
deep_emotion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
import torch.nn.functional as F
class Deep_Emotion(nn.Module):
def __init__(self):
'''
Deep_Emotion class contains the network architecture.
'''
super(Deep_Emotion,self).__init__()
self.conv1 = nn.Conv2d(1,10,3)
self.conv2 = nn.Conv2d(10,10,3)
self.pool2 = nn.MaxPool2d(2,2)
self.conv3 = nn.Conv2d(10,10,3)
self.conv4 = nn.Conv2d(10,10,3)
self.pool4 = nn.MaxPool2d(2,2)
self.norm = nn.BatchNorm2d(10)
self.fc1 = nn.Linear(810,50)
self.fc2 = nn.Linear(50,7)
self.localization = nn.Sequential(
nn.Conv2d(1, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
self.fc_loc = nn.Sequential(
nn.Linear(640, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 640)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self,input):
out = self.stn(input)
out = F.relu(self.conv1(out))
out = self.conv2(out)
out = F.relu(self.pool2(out))
out = F.relu(self.conv3(out))
out = self.norm(self.conv4(out))
out = F.relu(self.pool4(out))
out = F.dropout(out)
out = out.view(-1, 810)
out = F.relu(self.fc1(out))
out = self.fc2(out)
return out