forked from commaai/controls_challenge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtinyphysics_modified.py
228 lines (192 loc) · 9.13 KB
/
tinyphysics_modified.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import argparse
import numpy as np
import onnxruntime as ort
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import signal
from collections import namedtuple
from hashlib import md5
from pathlib import Path
from typing import List, Union, Tuple
from tqdm import tqdm
from controllers import BaseController, CONTROLLERS
sns.set_theme()
signal.signal(signal.SIGINT, signal.SIG_DFL) # Enable Ctrl-C on plot windows
ACC_G = 9.81
CONTROL_START_IDX = 100
CONTEXT_LENGTH = 20
VOCAB_SIZE = 1024
LATACCEL_RANGE = [-5, 5]
STEER_RANGE = [-2, 2]
MAX_ACC_DELTA = 0.5
DEL_T = 0.1
LAT_ACCEL_COST_MULTIPLIER = 5.0
State = namedtuple('State', ['roll_lataccel', 'v_ego', 'a_ego'])
class LataccelTokenizer:
def __init__(self):
self.vocab_size = VOCAB_SIZE
self.bins = np.linspace(LATACCEL_RANGE[0], LATACCEL_RANGE[1], self.vocab_size)
def encode(self, value: Union[float, np.ndarray]) -> Union[int, np.ndarray]:
value = self.clip(value)
return np.digitize(value, self.bins, right=True)
def decode(self, token: Union[int, np.ndarray]) -> Union[float, np.ndarray]:
return self.bins[token]
def clip(self, value: Union[float, np.ndarray]) -> Union[float, np.ndarray]:
return np.clip(value, LATACCEL_RANGE[0], LATACCEL_RANGE[1])
class TinyPhysicsModel_Modified:
def __init__(self, model_path: str, debug: bool) -> None:
self.tokenizer = LataccelTokenizer()
options = ort.SessionOptions()
options.intra_op_num_threads = 1
options.inter_op_num_threads = 1
options.log_severity_level = 3
if 'CUDAExecutionProvider' in ort.get_available_providers():
if debug:
print("ONNX Runtime is using GPU")
provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'DEFAULT'})
else:
if debug:
print("ONNX Runtime is using CPU")
provider = 'CPUExecutionProvider'
with open(model_path, "rb") as f:
self.ort_session = ort.InferenceSession(f.read(), options, [provider])
def softmax(self, x, axis=-1):
e_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
return e_x / np.sum(e_x, axis=axis, keepdims=True)
def predict(self, input_data: dict, temperature=1.) -> dict:
res = self.ort_session.run(None, input_data)[0]
probs = self.softmax(res / temperature, axis=-1)
# we only care about the last timestep (batch size is just 1)
assert probs.shape[0] == 1
assert probs.shape[2] == VOCAB_SIZE
sample = np.random.choice(probs.shape[2], p=probs[0, -1])
return sample
def get_current_lataccel(self, sim_states: List[State], actions: List[float], past_preds: List[float]) -> float:
tokenized_actions = self.tokenizer.encode(past_preds)
raw_states = [list(x) for x in sim_states]
states = np.column_stack([actions, raw_states])
input_data = {
'states': np.expand_dims(states, axis=0).astype(np.float32),
'tokens': np.expand_dims(tokenized_actions, axis=0).astype(np.int64)
}
return self.tokenizer.decode(self.predict(input_data, temperature=1.))
class TinyPhysicsSimulator_Modified:
def __init__(self, model: TinyPhysicsModel_Modified, data_path: str, controller: BaseController, debug: bool = False) -> None:
self.data_path = data_path
self.sim_model = model
self.data = self.get_data(data_path)
self.controller = controller
self.debug = debug
self.times = []
self.reset()
def reset(self) -> None:
self.step_idx = CONTEXT_LENGTH
self.state_history = [self.get_state_target(i)[0] for i in range(self.step_idx)]
self.action_history = self.data['steer_command'].values[:self.step_idx].tolist()
self.current_lataccel_history = [self.get_state_target(i)[1] for i in range(self.step_idx)]
self.target_lataccel_history = [self.get_state_target(i)[1] for i in range(self.step_idx)]
self.current_lataccel = self.current_lataccel_history[-1]
seed = int(md5(self.data_path.encode()).hexdigest(), 16) % 10**4
np.random.seed(seed)
def get_data(self, data_path: str) -> pd.DataFrame:
df = pd.read_csv(data_path)
processed_df = pd.DataFrame({
'roll_lataccel': np.sin(df['roll'].values) * ACC_G,
'v_ego': df['vEgo'].values,
'a_ego': df['aEgo'].values,
'target_lataccel': df['targetLateralAcceleration'].values,
'steer_command': df['steerCommand'].values
})
return processed_df
def sim_step(self, step_idx: int) -> None:
pred = self.sim_model.get_current_lataccel(
sim_states=self.state_history[-CONTEXT_LENGTH:],
actions=self.action_history[-CONTEXT_LENGTH:],
past_preds=self.current_lataccel_history[-CONTEXT_LENGTH:]
)
pred = np.clip(pred, self.current_lataccel - MAX_ACC_DELTA, self.current_lataccel + MAX_ACC_DELTA)
if step_idx >= CONTROL_START_IDX:
self.current_lataccel = pred
else:
self.current_lataccel = self.get_state_target(step_idx)[1]
self.current_lataccel_history.append(self.current_lataccel)
return pred
def control_step(self, step_idx: int, action) -> None:
action = np.clip(action, STEER_RANGE[0], STEER_RANGE[1])
self.action_history.append(action)
def get_state_target(self, step_idx: int) -> Tuple[List, float]:
state = self.data.iloc[step_idx]
return State(roll_lataccel=state['roll_lataccel'], v_ego=state['v_ego'], a_ego=state['a_ego']), state['target_lataccel']
def step(self,action) -> None:
state, target = self.get_state_target(self.step_idx)
self.state_history.append(state)
self.target_lataccel_history.append(target)
self.control_step(self.step_idx,action)
pred = self.sim_step(self.step_idx)
self.step_idx += 1
return pred
def plot_data(self, ax, lines, axis_labels, title) -> None:
ax.clear()
for line, label in lines:
ax.plot(line, label=label)
ax.axline((CONTROL_START_IDX, 0), (CONTROL_START_IDX, 1), color='black', linestyle='--', alpha=0.5, label='Control Start')
ax.legend()
ax.set_title(f"{title} | Step: {self.step_idx}")
ax.set_xlabel(axis_labels[0])
ax.set_ylabel(axis_labels[1])
def compute_cost(self) -> float:
target = np.array(self.target_lataccel_history)[CONTROL_START_IDX:]
pred = np.array(self.current_lataccel_history)[CONTROL_START_IDX:]
lat_accel_cost = np.mean((target - pred)**2) * 100
jerk_cost = np.mean((np.diff(pred) / DEL_T)**2) * 100
total_cost = (lat_accel_cost * LAT_ACCEL_COST_MULTIPLIER) + jerk_cost
return {'lataccel_cost': lat_accel_cost, 'jerk_cost': jerk_cost, 'total_cost': total_cost}
def rollout(self) -> None:
if self.debug:
plt.ion()
fig, ax = plt.subplots(4, figsize=(12, 14), constrained_layout=True)
for _ in range(CONTEXT_LENGTH, len(self.data)):
self.step()
if self.debug and self.step_idx % 10 == 0:
print(f"Step {self.step_idx:<5}: Current lataccel: {self.current_lataccel:>6.2f}, Target lataccel: {self.target_lataccel_history[-1]:>6.2f}")
self.plot_data(ax[0], [(self.target_lataccel_history, 'Target lataccel'), (self.current_lataccel_history, 'Current lataccel')], ['Step', 'Lateral Acceleration'], 'Lateral Acceleration')
self.plot_data(ax[1], [(self.action_history, 'Action')], ['Step', 'Action'], 'Action')
self.plot_data(ax[2], [(np.array(self.state_history)[:, 0], 'Roll Lateral Acceleration')], ['Step', 'Lateral Accel due to Road Roll'], 'Lateral Accel due to Road Roll')
self.plot_data(ax[3], [(np.array(self.state_history)[:, 1], 'v_ego')], ['Step', 'v_ego'], 'v_ego')
plt.pause(0.01)
if self.debug:
plt.ioff()
plt.show()
return self.compute_cost()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True)
parser.add_argument("--data_path", type=str, required=True)
parser.add_argument("--num_segs", type=int, default=100)
parser.add_argument("--debug", action='store_true')
parser.add_argument("--controller", default='simple', choices=CONTROLLERS.keys())
args = parser.parse_args()
TinyPhysicsModel_Modified = TinyPhysicsModel_Modified(args.model_path, debug=args.debug)
controller = CONTROLLERS[args.controller]()
data_path = Path(args.data_path)
if data_path.is_file():
sim = TinyPhysicsSimulator_Modified(TinyPhysicsModel_Modified, args.data_path, controller=controller, debug=args.debug)
costs = sim.rollout()
print(f"\nAverage lataccel_cost: {costs['lataccel_cost']:>6.4}, average jerk_cost: {costs['jerk_cost']:>6.4}, average total_cost: {costs['total_cost']:>6.4}")
elif data_path.is_dir():
costs = []
files = sorted(data_path.iterdir())[:args.num_segs]
for data_file in tqdm(files, total=len(files)):
sim = TinyPhysicsSimulator_Modified(TinyPhysicsModel_Modified, str(data_file), controller=controller, debug=args.debug)
cost = sim.rollout()
costs.append(cost)
costs_df = pd.DataFrame(costs)
print(f"\nAverage lataccel_cost: {np.mean(costs_df['lataccel_cost']):>6.4}, average jerk_cost: {np.mean(costs_df['jerk_cost']):>6.4}, average total_cost: {np.mean(costs_df['total_cost']):>6.4}")
for cost in costs_df.columns:
plt.hist(costs_df[cost], bins=np.arange(0, 1000, 10), label=cost, alpha=0.5)
plt.xlabel('costs')
plt.ylabel('Frequency')
plt.title('costs Distribution')
plt.legend()
plt.show()