-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
150 lines (108 loc) · 5.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import time
import torch
import torch.nn.functional as F
import torchvision.utils as utils
from math import log10
import skimage
from skimage import measure
import cv2
#from skimage.measure import compare_psnr, compare_ssim
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import pdb
def calc_psnr(im1, im2):
im1 = im1[0].view(im1.shape[2],im1.shape[3],3).detach().cpu().numpy()
im2 = im2[0].view(im2.shape[2],im2.shape[3],3).detach().cpu().numpy()
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
#ans = [compare_psnr(im1_y, im2_y)] #deprecated
ans = [psnr(im1_y, im2_y)]
return ans
def calc_ssim(im1, im2):
im1 = im1[0].view(im1.shape[2],im1.shape[3],3).detach().cpu().numpy()
im2 = im2[0].view(im2.shape[2],im2.shape[3],3).detach().cpu().numpy()
im1_y = cv2.cvtColor(im1, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
im2_y = cv2.cvtColor(im2, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
#ans = [compare_ssim(im1_y, im2_y)] #deprecated
ans = [ssim(im1_y, im2_y)]
return ans
def to_psnr(pred_image, gt):
mse = F.mse_loss(pred_image, gt, reduction='none')
mse_split = torch.split(mse, 1, dim=0)
mse_list = [torch.mean(torch.squeeze(mse_split[ind])).item() for ind in range(len(mse_split))]
intensity_max = 1.0
psnr_list = [10.0 * log10(intensity_max / mse) for mse in mse_list]
return psnr_list
def to_ssim_skimage(pred_image, gt):
pred_image_list = torch.split(pred_image, 1, dim=0)
gt_list = torch.split(gt, 1, dim=0)
pred_image_list_np = [pred_image_list[ind].permute(0, 2, 3, 1).data.cpu().numpy().squeeze() for ind in range(len(pred_image_list))]
gt_list_np = [gt_list[ind].permute(0, 2, 3, 1).data.cpu().numpy().squeeze() for ind in range(len(pred_image_list))]
#ssim_list = [measure.compare_ssim(pred_image_list_np[ind], gt_list_np[ind], data_range=1, multichannel=True) for ind in range(len(pred_image_list))]
ssim_list = [measure.ssim(pred_image_list_np[ind], gt_list_np[ind], data_range=2, multichannel=True) for ind in range(len(pred_image_list))]
return ssim_list
def validation(net, val_data_loader, device, exp_name, save_tag=False):
psnr_list = []
ssim_list = []
for batch_id, val_data in enumerate(val_data_loader):
with torch.no_grad():
input_im, gt, imgid = val_data
input_im = input_im.to(device)
gt = gt.to(device)
pred_image = net(input_im)
# --- Calculate the average PSNR --- #
psnr_list.extend(calc_psnr(pred_image, gt))
# --- Calculate the average SSIM --- #
ssim_list.extend(calc_ssim(pred_image, gt))
# --- Save image --- #
if save_tag:
# print()
save_image(pred_image, imgid, exp_name)
avr_psnr = sum(psnr_list) / len(psnr_list)
avr_ssim = sum(ssim_list) / len(ssim_list)
return avr_psnr, avr_ssim
def validation_val(net, val_data_loader, device, exp_name, category, save_tag=False):
psnr_list = []
ssim_list = []
for batch_id, val_data in enumerate(val_data_loader):
with torch.no_grad():
input_im, gt, imgid = val_data
input_im = input_im.to(device)
gt = gt.to(device)
pred_image = net(input_im)
# --- Calculate the average PSNR --- #
psnr_list.extend(calc_psnr(pred_image, gt))
# --- Calculate the average SSIM --- #
ssim_list.extend(calc_ssim(pred_image, gt))
# --- Save image --- #
if save_tag:
# print()
save_image(pred_image, imgid, exp_name,category)
avr_psnr = sum(psnr_list) / len(psnr_list)
avr_ssim = sum(ssim_list) / len(ssim_list)
return avr_psnr, avr_ssim
def save_image(pred_image, image_name, exp_name, category):
pred_image_images = torch.split(pred_image, 1, dim=0)
batch_num = len(pred_image_images)
for ind in range(batch_num):
image_name_1 = image_name[ind].split('/')[-1]
print(image_name_1)
utils.save_image(pred_image_images[ind], './results/{}/{}/{}'.format(category,exp_name,image_name_1))
def print_log(epoch, num_epochs, one_epoch_time, train_psnr, val_psnr, val_ssim, exp_name):
print('({0:.0f}s) Epoch [{1}/{2}], Train_PSNR:{3:.2f}, Val_PSNR:{4:.2f}, Val_SSIM:{5:.4f}'
.format(one_epoch_time, epoch, num_epochs, train_psnr, val_psnr, val_ssim))
# --- Write the training log --- #
with open('./training_log/{}_log.txt'.format( exp_name), 'a') as f:
print('Date: {0}s, Time_Cost: {1:.0f}s, Epoch: [{2}/{3}], Train_PSNR: {4:.2f}, Val_PSNR: {5:.2f}, Val_SSIM: {6:.4f}'
.format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
one_epoch_time, epoch, num_epochs, train_psnr, val_psnr, val_ssim), file=f)
def adjust_learning_rate(optimizer, epoch, lr_decay=0.5):
# --- Decay learning rate --- #
step = 50
if not epoch % step and epoch > 0:
for param_group in optimizer.param_groups:
param_group['lr'] *= lr_decay
print('Learning rate sets to {}.'.format(param_group['lr']))
else:
for param_group in optimizer.param_groups:
print('Learning rate sets to {}.'.format(param_group['lr']))