-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlseg_app.py
386 lines (340 loc) · 11.3 KB
/
lseg_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from collections import namedtuple
import altair as alt
import math
import pandas as pd
import streamlit as st
st.set_page_config(layout="wide")
from PIL import Image
import os
import torch
import os
import argparse
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather
from additional_utils.models import LSeg_MultiEvalModule
from modules.lseg_module import LSegModule
import cv2
import math
import types
import functools
import torchvision.transforms as torch_transforms
import copy
import itertools
from PIL import Image
import matplotlib.pyplot as plt
import clip
from encoding.models.sseg import BaseNet
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import matplotlib.patches as mpatches
from matplotlib.backends.backend_agg import FigureCanvasAgg
from data import get_dataset
import torchvision.transforms as transforms
def get_new_pallete(num_cls):
n = num_cls
pallete = [0]*(n*3)
for j in range(0,n):
lab = j
pallete[j*3+0] = 0
pallete[j*3+1] = 0
pallete[j*3+2] = 0
i = 0
while (lab > 0):
pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i))
pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i))
pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i))
i = i + 1
lab >>= 3
return pallete
def get_new_mask_pallete(npimg, new_palette, out_label_flag=False, labels=None):
"""Get image color pallete for visualizing masks"""
# put colormap
out_img = Image.fromarray(npimg.squeeze().astype('uint8'))
out_img.putpalette(new_palette)
if out_label_flag:
assert labels is not None
u_index = np.unique(npimg)
patches = []
for i, index in enumerate(u_index):
label = labels[index]
cur_color = [new_palette[index * 3] / 255.0, new_palette[index * 3 + 1] / 255.0, new_palette[index * 3 + 2] / 255.0]
red_patch = mpatches.Patch(color=cur_color, label=label)
patches.append(red_patch)
return out_img, patches
@st.cache(allow_output_mutation=True)
def load_model():
class Options:
def __init__(self):
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
# model and dataset
parser.add_argument(
"--model", type=str, default="encnet", help="model name (default: encnet)"
)
parser.add_argument(
"--backbone",
type=str,
default="clip_vitl16_384",
help="backbone name (default: resnet50)",
)
parser.add_argument(
"--dataset",
type=str,
default="ade20k",
help="dataset name (default: pascal12)",
)
parser.add_argument(
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
)
parser.add_argument(
"--base-size", type=int, default=520, help="base image size"
)
parser.add_argument(
"--crop-size", type=int, default=480, help="crop image size"
)
parser.add_argument(
"--train-split",
type=str,
default="train",
help="dataset train split (default: train)",
)
parser.add_argument(
"--aux", action="store_true", default=False, help="Auxilary Loss"
)
parser.add_argument(
"--se-loss",
action="store_true",
default=False,
help="Semantic Encoding Loss SE-loss",
)
parser.add_argument(
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
training (default: auto)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
testing (default: same as batch size)",
)
# cuda, seed and logging
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
# checking point
parser.add_argument(
"--weights", type=str, default='', help="checkpoint to test"
)
# evaluation option
parser.add_argument(
"--eval", action="store_true", default=False, help="evaluating mIoU"
)
parser.add_argument(
"--export",
type=str,
default=None,
help="put the path to resuming file if needed",
)
parser.add_argument(
"--acc-bn",
action="store_true",
default=False,
help="Re-accumulate BN statistics",
)
parser.add_argument(
"--test-val",
action="store_true",
default=False,
help="generate masks on val set",
)
parser.add_argument(
"--no-val",
action="store_true",
default=False,
help="skip validation during training",
)
parser.add_argument(
"--module",
default='lseg',
help="select model definition",
)
# test option
parser.add_argument(
"--data-path", type=str, default='../datasets/', help="path to test image folder"
)
parser.add_argument(
"--no-scaleinv",
dest="scale_inv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--ignore_index",
type=int,
default=-1,
help="numeric value of ignore label in gt",
)
parser.add_argument(
"--label_src",
type=str,
default="default",
help="how to get the labels",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
parser.add_argument(
"--block_depth",
type=int,
default=0,
help="how many blocks should be used",
)
parser.add_argument(
"--activation",
choices=['lrelu', 'tanh'],
default="lrelu",
help="use which activation to activate the block",
)
self.parser = parser
def parse(self):
args = self.parser.parse_args(args=[])
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
return args
args = Options().parse()
torch.manual_seed(args.seed)
args.test_batch_size = 1
alpha=0.5
args.scale_inv = False
args.widehead = True
args.dataset = 'ade20k'
args.backbone = 'clip_vitl16_384'
args.weights = 'checkpoints/demo_e200.ckpt'
args.ignore_index = 255
module = LSegModule.load_from_checkpoint(
checkpoint_path=args.weights,
data_path=args.data_path,
dataset=args.dataset,
backbone=args.backbone,
aux=args.aux,
num_features=256,
aux_weight=0,
se_loss=False,
se_weight=0,
base_lr=0,
batch_size=1,
max_epochs=0,
ignore_index=args.ignore_index,
dropout=0.0,
scale_inv=args.scale_inv,
augment=False,
no_batchnorm=False,
widehead=args.widehead,
widehead_hr=args.widehead_hr,
map_locatin="cpu",
arch_option=0,
block_depth=0,
activation='lrelu',
)
input_transform = module.val_transform
# dataloader
loader_kwargs = (
{"num_workers": args.workers, "pin_memory": True} if args.cuda else {}
)
# model
if isinstance(module.net, BaseNet):
model = module.net
else:
model = module
model = model.eval()
model = model.cpu()
scales = (
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
if args.dataset == "citys"
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
)
model.mean = [0.5, 0.5, 0.5]
model.std = [0.5, 0.5, 0.5]
evaluator = LSeg_MultiEvalModule(
model, scales=scales, flip=True
).cuda()
evaluator.eval()
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
transforms.Resize([360,480]),
]
)
return evaluator, transform
"""
# LSeg Demo
"""
lseg_model, lseg_transform = load_model()
uploaded_file = st.file_uploader("Choose an image...")
input_labels = st.text_input("Input labels", value="dog, grass, other")
st.write("The labels are", input_labels)
if uploaded_file is not None:
image = Image.open(uploaded_file)
pimage = lseg_transform(np.array(image)).unsqueeze(0)
labels = []
for label in input_labels.split(","):
labels.append(label.strip())
with torch.no_grad():
outputs = lseg_model.parallel_forward(pimage, labels)
predicts = [
torch.max(output, 1)[1].cpu().numpy()
for output in outputs
]
image = pimage[0].permute(1,2,0)
image = image * 0.5 + 0.5
image = Image.fromarray(np.uint8(255*image)).convert("RGBA")
pred = predicts[0]
new_palette = get_new_pallete(len(labels))
mask, patches = get_new_mask_pallete(pred, new_palette, out_label_flag=True, labels=labels)
seg = mask.convert("RGBA")
fig = plt.figure()
plt.subplot(121)
plt.imshow(image)
plt.axis('off')
plt.subplot(122)
plt.imshow(seg)
plt.legend(handles=patches, loc='upper right', bbox_to_anchor=(1.3, 1), prop={'size': 5})
plt.axis('off')
plt.tight_layout()
#st.image([image,seg], width=700, caption=["Input image", "Segmentation"])
st.pyplot(fig)