-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #15 from neulab/jean-llavaone-molmo-llamavision
Adding new models: llava-onevision, molmo, llama-3.2-vision
- Loading branch information
Showing
4 changed files
with
1,154 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
import warnings | ||
|
||
warnings.simplefilter("ignore", category=DeprecationWarning) | ||
warnings.filterwarnings("ignore") | ||
|
||
from transformers import MllamaForConditionalGeneration, AutoProcessor, AutoTokenizer | ||
from lmms_eval.api.model import lmms | ||
from lmms_eval.api.registry import register_model | ||
import torch | ||
from typing import List, Optional, Union, Tuple | ||
from lmms_eval import utils | ||
from lmms_eval.api.instance import Instance | ||
from tqdm import tqdm | ||
from accelerate import Accelerator, DistributedType, InitProcessGroupKwargs | ||
from accelerate.state import AcceleratorState | ||
|
||
from loguru import logger as eval_logger | ||
from datetime import timedelta | ||
|
||
@register_model("llama_vision") | ||
class LlamaVision(lmms): | ||
""" | ||
LlamaVision Model | ||
""" | ||
def __init__( | ||
self, | ||
pretrained: str = "meta-llama/Llama-3.2-11B-Vision-Instruct", | ||
device: Optional[str] = "cuda", | ||
device_map="cuda:0", | ||
max_new_tokens: int = 256, | ||
batch_size: Optional[Union[int, str]] = 1, | ||
**kwargs, | ||
) -> None: | ||
super().__init__() | ||
# Do not use kwargs for now | ||
assert kwargs == {}, f"Unexpected kwargs: {kwargs}" | ||
|
||
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52)) | ||
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs]) | ||
self.accelerator = accelerator | ||
if accelerator.num_processes > 1: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
self._device = torch.device(device) | ||
self.device_map = device_map | ||
else: | ||
self._device = torch.device(f"cuda:{accelerator.local_process_index}") | ||
self.device_map = f"cuda:{accelerator.local_process_index}" | ||
|
||
self._tokenizer = AutoTokenizer.from_pretrained(pretrained) | ||
self._model = MllamaForConditionalGeneration.from_pretrained(pretrained, torch_dtype=torch.bfloat16, device_map=self.device_map) | ||
self.model.eval() | ||
self.model.tie_weights() | ||
self._config = self.model.config | ||
self.processor = AutoProcessor.from_pretrained(pretrained) | ||
self.max_new_tokens = max_new_tokens | ||
self.batch_size_per_gpu = int(batch_size) | ||
assert self.batch_size_per_gpu == 1, "Batch size must be 1 for LlamaVision model" | ||
if accelerator.num_processes > 1: | ||
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.DEEPSPEED], "Unsupported distributed type provided. Only DDP and FSDP are supported." | ||
# If you want to use DistributedType.DEEPSPEED, you have to run accelerate config before using the model | ||
# Also, you have to select zero stage 0 (equivalent to DDP) in order to make the prepare model works | ||
# I tried to set different parameters in the kwargs to let default zero 2 stage works, but it didn't work. | ||
if accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
kwargs = { | ||
"train_micro_batch_size_per_gpu": self.batch_size_per_gpu, | ||
"train_batch_size": self.batch_size_per_gpu * accelerator.num_processes, | ||
} | ||
AcceleratorState().deepspeed_plugin.deepspeed_config_process(must_match=True, **kwargs) | ||
eval_logger.info("Detected that you are using DistributedType.DEEPSPEED. Make sure you run `accelerate config` and set zero stage to 0") | ||
|
||
if accelerator.distributed_type == DistributedType.FSDP or accelerator.distributed_type == DistributedType.DEEPSPEED: | ||
self._model = accelerator.prepare(self.model) | ||
else: | ||
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) | ||
self.accelerator = accelerator | ||
if self.accelerator.is_local_main_process: | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with data parallelism") | ||
self._rank = self.accelerator.local_process_index | ||
self._world_size = self.accelerator.num_processes | ||
elif accelerator.num_processes == 1 and device_map == "auto": | ||
eval_logger.info(f"Using {accelerator.num_processes} devices with tensor parallelism") | ||
self._rank = 0 | ||
self._word_size = 1 | ||
else: | ||
eval_logger.info(f"Using single device: {self._device}") | ||
self.model.to(self._device) | ||
self._rank = 0 | ||
self._world_size = 1 | ||
|
||
@property | ||
def config(self): | ||
# return the associated transformers.AutoConfig for the given pretrained model. | ||
return self._config | ||
|
||
@property | ||
def tokenizer(self): | ||
return self._tokenizer | ||
|
||
@property | ||
def model(self): | ||
# returns the model, unwrapping it if using Accelerate | ||
if hasattr(self, "accelerator"): | ||
return self.accelerator.unwrap_model(self._model) | ||
else: | ||
return self._model | ||
|
||
@property | ||
def eot_token_id(self): | ||
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence* | ||
return self.tokenizer.eos_token_id | ||
|
||
@property | ||
def batch_size(self): | ||
return self.batch_size_per_gpu | ||
|
||
@property | ||
def device(self): | ||
return self._device | ||
|
||
@property | ||
def rank(self): | ||
return self._rank | ||
|
||
@property | ||
def world_size(self): | ||
return self._world_size | ||
|
||
def flatten(self, input, only_get_first=False): | ||
new_list = [] | ||
for i in input: | ||
for j in i: | ||
new_list.append(j) | ||
if only_get_first: | ||
break | ||
return new_list | ||
|
||
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]: | ||
""" """ | ||
add_special_tokens = False if add_special_tokens is None else add_special_tokens | ||
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens) | ||
# left-truncate the encoded context to be at most `left_truncate_len` tokens long | ||
if left_truncate_len: | ||
encoding = encoding[-left_truncate_len:] | ||
return encoding | ||
|
||
def generate_until(self, requests: List[Instance]) -> List[str]: | ||
res = [] | ||
|
||
def _collate(x): | ||
# the negative sign on len(toks) sorts descending - this has a few advantages: | ||
# - time estimates will always be over not underestimates, which is more useful for planning | ||
# - to know the size of a batch when going through the list, you know the first one is always the batch | ||
# padded context length. this is useful to simplify the batching logic and more importantly to make | ||
# automatic adaptive batches much much easier to implement | ||
# - any OOMs will happen right away rather than near the end | ||
toks = self.tok_encode(x[0]) | ||
return -len(toks), x[0] | ||
|
||
re_ords = utils.Collator([reg.args for reg in requests], _collate, grouping=True) | ||
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None) | ||
num_iters = len(requests) // self.batch_size if len(requests) % self.batch_size == 0 else len(requests) // self.batch_size + 1 | ||
pbar = tqdm(total=num_iters, disable=(self.rank != 0), desc="Model Responding") | ||
|
||
for chunk in chunks: | ||
contexts, all_gen_kwargs, doc_to_visual, doc_id, task, split = zip(*chunk) | ||
task = task[0] | ||
split = split[0] | ||
visuals = [doc_to_visual[0](self.task_dict[task][split][ids]) for ids in doc_id] | ||
visuals = self.flatten(visuals) | ||
gen_kwargs = all_gen_kwargs[0] | ||
input_text = contexts[0] | ||
image_list = [{"type": "image"} for _ in range(len(visuals))] | ||
image_list.append({"type": "text", "text": input_text}) | ||
message = [ | ||
{"role": "user", "content": image_list} | ||
] | ||
|
||
prompts = self.processor.apply_chat_template(message, add_generation_prompt=True) | ||
model_inputs = self.processor( | ||
images=visuals, | ||
text=prompts, | ||
add_special_tokens=False, | ||
return_tensors="pt" | ||
) | ||
model_inputs = model_inputs.to(self._model.device) | ||
|
||
# preconfigure gen_kwargs with defaults | ||
if "max_new_tokens" not in gen_kwargs: | ||
gen_kwargs["max_new_tokens"] = self.max_new_tokens | ||
if "max_length" in gen_kwargs and "max_new_tokens" in gen_kwargs: | ||
gen_kwargs.pop("max_length") | ||
if "temperature" not in gen_kwargs: | ||
gen_kwargs["temperature"] = 0 | ||
if "top_p" not in gen_kwargs: | ||
gen_kwargs["top_p"] = None | ||
if "num_beams" not in gen_kwargs: | ||
gen_kwargs["num_beams"] = 1 | ||
if "until" in gen_kwargs: | ||
gen_kwargs.pop("until") | ||
if "do_sample" not in gen_kwargs: | ||
gen_kwargs["do_sample"] = False | ||
|
||
generation_output = self._model.generate(**model_inputs, **gen_kwargs) | ||
generated_tokens = generation_output[0, model_inputs['input_ids'].size(1):] | ||
response = self.processor.decode(generated_tokens, skip_special_tokens=True) | ||
assert type(response) == str | ||
res.append(response) | ||
pbar.update(1) | ||
|
||
# reorder this group of results back to original unsorted form | ||
res = re_ords.get_original(res) | ||
pbar.close() | ||
return res | ||
|
||
def loglikelihood(self, requests: List[Instance]) -> List[Tuple[float, bool]]: | ||
assert False, "Not implemented yet." |
Oops, something went wrong.