Skip to content

Latest commit

 

History

History
 
 

train_audio

LSTM Training Notes

Data Preparation

  • Use over 10,000 short audio clips with diverse speakers, each at least 5 seconds long, in 16k single-channel wav format.
  • Place these files in the train_audio/train_data folder.
  • Download wav2lip.pth from the wav2lip project (https://github.com/Rudrabha/Wav2Lip) and place it in the train_audio/checkpoints folder.

Notes

Audio files must be in 16k single-channel wav format.

Steps

1. Face Video Generation

python preparation_step0.py <face_path> <wav_16K_path>
# Example: preparation_step0.py face.jpg train_data

2. Mouth Region Extraction and PCA Modeling

python preparation_step1.py <data_path>
# Example: preparation_step1.py train_data

Now ensure the file directory is as follows:

|--/train_audio
|  |--/checkpoints
|  |  |--/wav2lip.pth
|  |  |--/pca.pkl
|  |  |--/wav2lip_pca_all.gif
|  |--/train_data
|  |  |--/000001.wav
|  |  |--/000001.avi
|  |  |--/000001.txt
|  |  |--/000002.wav
|  |  |--/000002.avi
|  |  |--/000002.txt
|  |  |--/000003.wav
|  |  |--/000003.avi
|  |  |--/000003.txt

3. Training LSTM Model

python train_lstm.py <data_path>
# Example: train_lstm.py train_data

4. Testing Audio Accuracy

python test.py <wav_path> <ckpt_path>
# Example: python test.py D:/Code/py/test_wav/0013.wav checkpoints/audio.pkl