forked from kleinlee/DH_live
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_input_validation.py
50 lines (44 loc) · 1.78 KB
/
train_input_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
os.environ["kmp_duplicate_lib_ok"] = "true"
import pickle
import cv2
import numpy as np
import random
import glob
import copy
import torch
from torch.utils.data import DataLoader
from talkingface.data.few_shot_dataset import Few_Shot_Dataset,data_preparation
from talkingface.utils import *
path_ = r"../preparation_mix"
video_list = [os.path.join(path_, i) for i in os.listdir(path_)]
point_size = 1
point_color = (0, 0, 255) # BGR
thickness = 4 # 0 、4、8
video_list = video_list[125:135]
dict_info = data_preparation(video_list)
device = torch.device("cuda:0")
test_set = Few_Shot_Dataset(dict_info, is_train=True, n_ref = 1)
testing_data_loader = DataLoader(dataset=test_set, num_workers=0, batch_size=1, shuffle=False)
def Tensor2img(tensor_, channel_index):
frame = tensor_[channel_index:channel_index + 3, :, :].detach().squeeze(0).cpu().float().numpy()
frame = np.transpose(frame, (1, 2, 0)) * 255.0
frame = frame.clip(0, 255)
return frame.astype(np.uint8)
size_ = 256
for iteration, batch in enumerate(testing_data_loader):
# source_tensor, source_prompt_tensor, ref_tensor, ref_prompt_tensor, target_tensor = [iii.to(device) for iii in batch]
source_tensor, ref_tensor, target_tensor = [iii.to(device) for iii in batch]
print(source_tensor.size(), ref_tensor.size(), target_tensor.size())
frame0 = Tensor2img(source_tensor[0], 0)
frame1 = Tensor2img(source_tensor[0], 3)
frame2 = Tensor2img(ref_tensor[0], 0)
frame3 = Tensor2img(ref_tensor[0], 3)
frame4 = Tensor2img(target_tensor[0], 0)
frame = np.concatenate([frame0, frame1, frame2, frame3, frame4], axis=1)
cv2.imshow("ss", frame)
# if iteration > 840:
# cv2.waitKey(-1)
cv2.waitKey(-1)
# break
cv2.destroyAllWindows()