-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[add] Add a variation of SAPPHIRE with BERT
- Loading branch information
1 parent
34ebd24
commit f096e09
Showing
1 changed file
with
137 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
import numpy as np | ||
import torch | ||
from transformers import BertModel, BertTokenizer | ||
|
||
from .word_alignment import WordAlign, WordEmbedding, get_similarity_matrix | ||
from .phrase_alignment import PhraseExtract, PhraseAlign | ||
|
||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
|
||
class BertEmbedding(WordEmbedding): | ||
|
||
def __init__(self, model_name): | ||
super().__init__() | ||
self.tokenizer = BertTokenizer.from_pretrained(model_name) | ||
self.model = BertModel.from_pretrained(model_name) | ||
self.model.to(device) | ||
|
||
def __call__(self, words): | ||
return self.vectorize(words) | ||
|
||
@staticmethod | ||
def _to_word_vectors(words, subwords, subword_vectors): | ||
tokenized = [] | ||
word_vectors = [] | ||
i = 0 | ||
for subword, vector in zip(subwords, subword_vectors): | ||
if '#' not in subword: | ||
tokenized.append(subword) | ||
word_vectors.append(vector) | ||
else: | ||
tokenized[i - 1] += subword.replace('#', '') | ||
word_vectors[i - 1] += vector | ||
|
||
if len(words) == len(word_vectors): | ||
return np.array(word_vectors) | ||
|
||
_words = [w.lower() for w in words] | ||
tmp = [] | ||
j = 0 | ||
for i, token in enumerate(tokenized): | ||
if j >= len(_words): | ||
break | ||
if token == _words[j]: | ||
tmp.append(word_vectors[i]) | ||
j += 1 | ||
else: | ||
for k in range(1, len(tokenized) - i + 1): | ||
cand = ''.join(tokenized[i:i + k + 1]) | ||
if cand == _words[j]: | ||
new_vectors = np.array(word_vectors[i:i + k + 1]) | ||
new_vector = np.mean(new_vectors, axis=0) | ||
tmp.append(new_vector) | ||
j += 1 | ||
break | ||
|
||
return np.array(tmp) | ||
|
||
def vectorize(self, words): | ||
self.model.eval() | ||
|
||
text = '[CLS] ' + ' '.join(words) + ' [SEP]' | ||
tokenized = self.tokenizer.tokenize(text) | ||
|
||
index_tokens = self.tokenizer.convert_tokens_to_ids(tokenized) | ||
tokens_tensor = torch.tensor([index_tokens]).to(device) | ||
|
||
with torch.no_grad(): | ||
encoded_layers, _ = self.model(tokens_tensor) | ||
|
||
encoded_layers = encoded_layers[0][1:-1].detach().cpu().numpy() | ||
vectors = self._to_word_vectors(words, tokenized[1:-1], | ||
np.array(encoded_layers)) | ||
|
||
return vectors | ||
|
||
|
||
class SapphireBert(object): | ||
|
||
def __init__(self, model_name='bert-base-uncased'): | ||
self.vectorizer = BertEmbedding(model_name) | ||
self.lambda_ = 0.6 | ||
self.delta = 0.6 | ||
self.alpha = 0.01 | ||
self.use_hungarian = False | ||
self.prune_k = -1 | ||
self.get_score = False | ||
self.epsilon = None | ||
self.word_aligner = WordAlign(self.lambda_, self.use_hungarian) | ||
self.extractor = PhraseExtract(self.delta, self.alpha) | ||
self.phrase_aligner = PhraseAlign(self.prune_k, | ||
self.get_score, | ||
self.epsilon) | ||
|
||
def __call__(self, tokens_src, tokens_trg): | ||
return self.align(tokens_src, tokens_trg) | ||
|
||
def set_params(self, lambda_=0.6, delta=0.6, alpha=0.01, hungarian=False, | ||
prune_k=-1, get_score=False, epsilon=None): | ||
self.lambda_ = lambda_ | ||
self.delta = delta | ||
self.alpha = alpha | ||
self.use_hungarian = hungarian | ||
self.prune_k = prune_k | ||
self.get_score = get_score | ||
self.epsilon = epsilon | ||
self.word_aligner.set_params(self.lambda_, self.use_hungarian) | ||
self.extractor.set_params(self.delta, self.alpha) | ||
self.phrase_aligner.set_params(self.prune_k, | ||
self.get_score, | ||
self.epsilon) | ||
|
||
def align(self, tokens_src: list, tokens_trg: list): | ||
try: | ||
len_src = len(tokens_src) | ||
len_trg = len(tokens_trg) | ||
|
||
vectors_src = self.vectorizer(tokens_src) | ||
vectors_trg = self.vectorizer(tokens_trg) | ||
|
||
sim_matrix = get_similarity_matrix(vectors_src, vectors_trg) | ||
word_alignment = self.word_aligner(sim_matrix) | ||
|
||
phrase_pairs = self.extractor( | ||
word_alignment, vectors_src, vectors_trg) | ||
phrase_alignment = self.phrase_aligner( | ||
phrase_pairs, len_src, len_trg) | ||
|
||
except ValueError: | ||
word_alignment = [] | ||
if self.get_score: | ||
phrase_alignment = ([], 0) | ||
else: | ||
phrase_alignment = [] | ||
|
||
return word_alignment, phrase_alignment |