forked from ArashPartow/bloom
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bloom_filter.hpp
735 lines (592 loc) · 22.1 KB
/
bloom_filter.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
/*
*********************************************************************
* *
* Open Bloom Filter *
* *
* Author: Arash Partow - 2000 *
* URL: http://www.partow.net *
* URL: http://www.partow.net/programming/hashfunctions/index.html *
* *
* Copyright notice: *
* Free use of the Open Bloom Filter Library is permitted under the *
* guidelines and in accordance with the MIT License. *
* http://www.opensource.org/licenses/MIT *
* *
*********************************************************************
*/
#ifndef INCLUDE_BLOOM_FILTER_HPP
#define INCLUDE_BLOOM_FILTER_HPP
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <string>
#include <vector>
static const std::size_t bits_per_char = 0x08; // 8 bits in 1 char(unsigned)
static const unsigned char bit_mask[bits_per_char] = {
0x01, //00000001
0x02, //00000010
0x04, //00000100
0x08, //00001000
0x10, //00010000
0x20, //00100000
0x40, //01000000
0x80 //10000000
};
class bloom_parameters
{
public:
bloom_parameters()
: minimum_size(1),
maximum_size(std::numeric_limits<unsigned long long int>::max()),
minimum_number_of_hashes(1),
maximum_number_of_hashes(std::numeric_limits<unsigned int>::max()),
projected_element_count(10000),
false_positive_probability(1.0 / projected_element_count),
random_seed(0xA5A5A5A55A5A5A5AULL)
{}
virtual ~bloom_parameters()
{}
inline bool operator!()
{
return (minimum_size > maximum_size) ||
(minimum_number_of_hashes > maximum_number_of_hashes) ||
(minimum_number_of_hashes < 1) ||
(0 == maximum_number_of_hashes) ||
(0 == projected_element_count) ||
(false_positive_probability < 0.0) ||
(std::numeric_limits<double>::infinity() == std::abs(false_positive_probability)) ||
(0 == random_seed) ||
(0xFFFFFFFFFFFFFFFFULL == random_seed);
}
// Allowable min/max size of the bloom filter in bits
unsigned long long int minimum_size;
unsigned long long int maximum_size;
// Allowable min/max number of hash functions
unsigned int minimum_number_of_hashes;
unsigned int maximum_number_of_hashes;
// The approximate number of elements to be inserted
// into the bloom filter, should be within one order
// of magnitude. The default is 10000.
unsigned long long int projected_element_count;
// The approximate false positive probability expected
// from the bloom filter. The default is assumed to be
// the reciprocal of the projected_element_count.
double false_positive_probability;
unsigned long long int random_seed;
struct optimal_parameters_t
{
optimal_parameters_t()
: number_of_hashes(0),
table_size(0)
{}
unsigned int number_of_hashes;
unsigned long long int table_size;
};
optimal_parameters_t optimal_parameters;
virtual bool compute_optimal_parameters()
{
/*
Note:
The following will attempt to find the number of hash functions
and minimum amount of storage bits required to construct a bloom
filter consistent with the user defined false positive probability
and estimated element insertion count.
*/
if (!(*this))
return false;
double min_m = std::numeric_limits<double>::infinity();
double min_k = 0.0;
double k = 1.0;
while (k < 1000.0)
{
const double numerator = (- k * projected_element_count);
const double denominator = std::log(1.0 - std::pow(false_positive_probability, 1.0 / k));
const double curr_m = numerator / denominator;
if (curr_m < min_m)
{
min_m = curr_m;
min_k = k;
}
k += 1.0;
}
optimal_parameters_t& optp = optimal_parameters;
optp.number_of_hashes = static_cast<unsigned int>(min_k);
optp.table_size = static_cast<unsigned long long int>(min_m);
optp.table_size += (((optp.table_size % bits_per_char) != 0) ? (bits_per_char - (optp.table_size % bits_per_char)) : 0);
if (optp.number_of_hashes < minimum_number_of_hashes)
optp.number_of_hashes = minimum_number_of_hashes;
else if (optp.number_of_hashes > maximum_number_of_hashes)
optp.number_of_hashes = maximum_number_of_hashes;
if (optp.table_size < minimum_size)
optp.table_size = minimum_size;
else if (optp.table_size > maximum_size)
optp.table_size = maximum_size;
return true;
}
};
class bloom_filter
{
protected:
typedef unsigned int bloom_type;
typedef unsigned char cell_type;
typedef std::vector<unsigned char> table_type;
public:
bloom_filter()
: salt_count_(0),
table_size_(0),
projected_element_count_(0),
inserted_element_count_ (0),
random_seed_(0),
desired_false_positive_probability_(0.0)
{}
bloom_filter(const bloom_parameters& p)
: projected_element_count_(p.projected_element_count),
inserted_element_count_(0),
random_seed_((p.random_seed * 0xA5A5A5A5) + 1),
desired_false_positive_probability_(p.false_positive_probability)
{
salt_count_ = p.optimal_parameters.number_of_hashes;
table_size_ = p.optimal_parameters.table_size;
generate_unique_salt();
bit_table_.resize(table_size_ / bits_per_char, static_cast<unsigned char>(0x00));
}
bloom_filter(const bloom_filter& filter)
{
this->operator=(filter);
}
inline bool operator == (const bloom_filter& f) const
{
if (this != &f)
{
return
(salt_count_ == f.salt_count_ ) &&
(table_size_ == f.table_size_ ) &&
(bit_table_.size() == f.bit_table_.size() ) &&
(projected_element_count_ == f.projected_element_count_ ) &&
(inserted_element_count_ == f.inserted_element_count_ ) &&
(random_seed_ == f.random_seed_ ) &&
(desired_false_positive_probability_ == f.desired_false_positive_probability_) &&
(salt_ == f.salt_ ) &&
(bit_table_ == f.bit_table_ ) ;
}
else
return true;
}
inline bool operator != (const bloom_filter& f) const
{
return !operator==(f);
}
inline bloom_filter& operator = (const bloom_filter& f)
{
if (this != &f)
{
salt_count_ = f.salt_count_;
table_size_ = f.table_size_;
bit_table_ = f.bit_table_;
salt_ = f.salt_;
projected_element_count_ = f.projected_element_count_;
inserted_element_count_ = f.inserted_element_count_;
random_seed_ = f.random_seed_;
desired_false_positive_probability_ = f.desired_false_positive_probability_;
}
return *this;
}
virtual ~bloom_filter()
{}
inline bool operator!() const
{
return (0 == table_size_);
}
inline void clear()
{
std::fill(bit_table_.begin(), bit_table_.end(), static_cast<unsigned char>(0x00));
inserted_element_count_ = 0;
}
inline void insert(const unsigned char* key_begin, const std::size_t& length)
{
std::size_t bit_index = 0;
std::size_t bit = 0;
for (std::size_t i = 0; i < salt_.size(); ++i)
{
compute_indices(hash_ap(key_begin, length, salt_[i]), bit_index, bit);
bit_table_[bit_index / bits_per_char] |= bit_mask[bit];
}
++inserted_element_count_;
}
template <typename T>
inline void insert(const T& t)
{
// Note: T must be a C++ POD type.
insert(reinterpret_cast<const unsigned char*>(&t),sizeof(T));
}
inline void insert(const std::string& key)
{
insert(reinterpret_cast<const unsigned char*>(key.data()),key.size());
}
inline void insert(const char* data, const std::size_t& length)
{
insert(reinterpret_cast<const unsigned char*>(data),length);
}
template <typename InputIterator>
inline void insert(const InputIterator begin, const InputIterator end)
{
InputIterator itr = begin;
while (end != itr)
{
insert(*(itr++));
}
}
inline virtual bool contains(const unsigned char* key_begin, const std::size_t length) const
{
std::size_t bit_index = 0;
std::size_t bit = 0;
for (std::size_t i = 0; i < salt_.size(); ++i)
{
compute_indices(hash_ap(key_begin, length, salt_[i]), bit_index, bit);
if ((bit_table_[bit_index / bits_per_char] & bit_mask[bit]) != bit_mask[bit])
{
return false;
}
}
return true;
}
template <typename T>
inline bool contains(const T& t) const
{
return contains(reinterpret_cast<const unsigned char*>(&t),static_cast<std::size_t>(sizeof(T)));
}
inline bool contains(const std::string& key) const
{
return contains(reinterpret_cast<const unsigned char*>(key.c_str()),key.size());
}
inline bool contains(const char* data, const std::size_t& length) const
{
return contains(reinterpret_cast<const unsigned char*>(data),length);
}
template <typename InputIterator>
inline InputIterator contains_all(const InputIterator begin, const InputIterator end) const
{
InputIterator itr = begin;
while (end != itr)
{
if (!contains(*itr))
{
return itr;
}
++itr;
}
return end;
}
template <typename InputIterator>
inline InputIterator contains_none(const InputIterator begin, const InputIterator end) const
{
InputIterator itr = begin;
while (end != itr)
{
if (contains(*itr))
{
return itr;
}
++itr;
}
return end;
}
inline virtual unsigned long long int size() const
{
return table_size_;
}
inline unsigned long long int element_count() const
{
return inserted_element_count_;
}
inline double effective_fpp() const
{
/*
Note:
The effective false positive probability is calculated using the
designated table size and hash function count in conjunction with
the current number of inserted elements - not the user defined
predicated/expected number of inserted elements.
*/
return std::pow(1.0 - std::exp(-1.0 * salt_.size() * inserted_element_count_ / size()), 1.0 * salt_.size());
}
inline bloom_filter& operator &= (const bloom_filter& f)
{
/* intersection */
if (
(salt_count_ == f.salt_count_ ) &&
(table_size_ == f.table_size_ ) &&
(random_seed_ == f.random_seed_)
)
{
for (std::size_t i = 0; i < bit_table_.size(); ++i)
{
bit_table_[i] &= f.bit_table_[i];
}
}
return *this;
}
inline bloom_filter& operator |= (const bloom_filter& f)
{
/* union */
if (
(salt_count_ == f.salt_count_ ) &&
(table_size_ == f.table_size_ ) &&
(random_seed_ == f.random_seed_)
)
{
for (std::size_t i = 0; i < bit_table_.size(); ++i)
{
bit_table_[i] |= f.bit_table_[i];
}
}
return *this;
}
inline bloom_filter& operator ^= (const bloom_filter& f)
{
/* difference */
if (
(salt_count_ == f.salt_count_ ) &&
(table_size_ == f.table_size_ ) &&
(random_seed_ == f.random_seed_)
)
{
for (std::size_t i = 0; i < bit_table_.size(); ++i)
{
bit_table_[i] ^= f.bit_table_[i];
}
}
return *this;
}
inline const cell_type* table() const
{
return bit_table_.data();
}
inline std::size_t hash_count()
{
return salt_.size();
}
protected:
inline virtual void compute_indices(const bloom_type& hash, std::size_t& bit_index, std::size_t& bit) const
{
bit_index = hash % table_size_;
bit = bit_index % bits_per_char;
}
void generate_unique_salt()
{
/*
Note:
A distinct hash function need not be implementation-wise
distinct. In the current implementation "seeding" a common
hash function with different values seems to be adequate.
*/
const unsigned int predef_salt_count = 128;
static const bloom_type predef_salt[predef_salt_count] =
{
0xAAAAAAAA, 0x55555555, 0x33333333, 0xCCCCCCCC,
0x66666666, 0x99999999, 0xB5B5B5B5, 0x4B4B4B4B,
0xAA55AA55, 0x55335533, 0x33CC33CC, 0xCC66CC66,
0x66996699, 0x99B599B5, 0xB54BB54B, 0x4BAA4BAA,
0xAA33AA33, 0x55CC55CC, 0x33663366, 0xCC99CC99,
0x66B566B5, 0x994B994B, 0xB5AAB5AA, 0xAAAAAA33,
0x555555CC, 0x33333366, 0xCCCCCC99, 0x666666B5,
0x9999994B, 0xB5B5B5AA, 0xFFFFFFFF, 0xFFFF0000,
0xB823D5EB, 0xC1191CDF, 0xF623AEB3, 0xDB58499F,
0xC8D42E70, 0xB173F616, 0xA91A5967, 0xDA427D63,
0xB1E8A2EA, 0xF6C0D155, 0x4909FEA3, 0xA68CC6A7,
0xC395E782, 0xA26057EB, 0x0CD5DA28, 0x467C5492,
0xF15E6982, 0x61C6FAD3, 0x9615E352, 0x6E9E355A,
0x689B563E, 0x0C9831A8, 0x6753C18B, 0xA622689B,
0x8CA63C47, 0x42CC2884, 0x8E89919B, 0x6EDBD7D3,
0x15B6796C, 0x1D6FDFE4, 0x63FF9092, 0xE7401432,
0xEFFE9412, 0xAEAEDF79, 0x9F245A31, 0x83C136FC,
0xC3DA4A8C, 0xA5112C8C, 0x5271F491, 0x9A948DAB,
0xCEE59A8D, 0xB5F525AB, 0x59D13217, 0x24E7C331,
0x697C2103, 0x84B0A460, 0x86156DA9, 0xAEF2AC68,
0x23243DA5, 0x3F649643, 0x5FA495A8, 0x67710DF8,
0x9A6C499E, 0xDCFB0227, 0x46A43433, 0x1832B07A,
0xC46AFF3C, 0xB9C8FFF0, 0xC9500467, 0x34431BDF,
0xB652432B, 0xE367F12B, 0x427F4C1B, 0x224C006E,
0x2E7E5A89, 0x96F99AA5, 0x0BEB452A, 0x2FD87C39,
0x74B2E1FB, 0x222EFD24, 0xF357F60C, 0x440FCB1E,
0x8BBE030F, 0x6704DC29, 0x1144D12F, 0x948B1355,
0x6D8FD7E9, 0x1C11A014, 0xADD1592F, 0xFB3C712E,
0xFC77642F, 0xF9C4CE8C, 0x31312FB9, 0x08B0DD79,
0x318FA6E7, 0xC040D23D, 0xC0589AA7, 0x0CA5C075,
0xF874B172, 0x0CF914D5, 0x784D3280, 0x4E8CFEBC,
0xC569F575, 0xCDB2A091, 0x2CC016B4, 0x5C5F4421
};
if (salt_count_ <= predef_salt_count)
{
std::copy(predef_salt,
predef_salt + salt_count_,
std::back_inserter(salt_));
for (std::size_t i = 0; i < salt_.size(); ++i)
{
/*
Note:
This is done to integrate the user defined random seed,
so as to allow for the generation of unique bloom filter
instances.
*/
salt_[i] = salt_[i] * salt_[(i + 3) % salt_.size()] + static_cast<bloom_type>(random_seed_);
}
}
else
{
std::copy(predef_salt, predef_salt + predef_salt_count, std::back_inserter(salt_));
srand(static_cast<unsigned int>(random_seed_));
while (salt_.size() < salt_count_)
{
bloom_type current_salt = static_cast<bloom_type>(rand()) * static_cast<bloom_type>(rand());
if (0 == current_salt)
continue;
if (salt_.end() == std::find(salt_.begin(), salt_.end(), current_salt))
{
salt_.push_back(current_salt);
}
}
}
}
inline bloom_type hash_ap(const unsigned char* begin, std::size_t remaining_length, bloom_type hash) const
{
const unsigned char* itr = begin;
unsigned int loop = 0;
while (remaining_length >= 8)
{
const unsigned int& i1 = *(reinterpret_cast<const unsigned int*>(itr)); itr += sizeof(unsigned int);
const unsigned int& i2 = *(reinterpret_cast<const unsigned int*>(itr)); itr += sizeof(unsigned int);
hash ^= (hash << 7) ^ i1 * (hash >> 3) ^
(~((hash << 11) + (i2 ^ (hash >> 5))));
remaining_length -= 8;
}
if (remaining_length)
{
if (remaining_length >= 4)
{
const unsigned int& i = *(reinterpret_cast<const unsigned int*>(itr));
if (loop & 0x01)
hash ^= (hash << 7) ^ i * (hash >> 3);
else
hash ^= (~((hash << 11) + (i ^ (hash >> 5))));
++loop;
remaining_length -= 4;
itr += sizeof(unsigned int);
}
if (remaining_length >= 2)
{
const unsigned short& i = *(reinterpret_cast<const unsigned short*>(itr));
if (loop & 0x01)
hash ^= (hash << 7) ^ i * (hash >> 3);
else
hash ^= (~((hash << 11) + (i ^ (hash >> 5))));
++loop;
remaining_length -= 2;
itr += sizeof(unsigned short);
}
if (remaining_length)
{
hash += ((*itr) ^ (hash * 0xA5A5A5A5)) + loop;
}
}
return hash;
}
std::vector<bloom_type> salt_;
std::vector<unsigned char> bit_table_;
unsigned int salt_count_;
unsigned long long int table_size_;
unsigned long long int projected_element_count_;
unsigned long long int inserted_element_count_;
unsigned long long int random_seed_;
double desired_false_positive_probability_;
};
inline bloom_filter operator & (const bloom_filter& a, const bloom_filter& b)
{
bloom_filter result = a;
result &= b;
return result;
}
inline bloom_filter operator | (const bloom_filter& a, const bloom_filter& b)
{
bloom_filter result = a;
result |= b;
return result;
}
inline bloom_filter operator ^ (const bloom_filter& a, const bloom_filter& b)
{
bloom_filter result = a;
result ^= b;
return result;
}
class compressible_bloom_filter : public bloom_filter
{
public:
compressible_bloom_filter(const bloom_parameters& p)
: bloom_filter(p)
{
size_list.push_back(table_size_);
}
inline unsigned long long int size() const
{
return size_list.back();
}
inline bool compress(const double& percentage)
{
if (
(percentage < 0.0) ||
(percentage >= 100.0)
)
{
return false;
}
unsigned long long int original_table_size = size_list.back();
unsigned long long int new_table_size = static_cast<unsigned long long int>((size_list.back() * (1.0 - (percentage / 100.0))));
new_table_size -= new_table_size % bits_per_char;
if (
(bits_per_char > new_table_size) ||
(new_table_size >= original_table_size)
)
{
return false;
}
desired_false_positive_probability_ = effective_fpp();
const unsigned long long int new_tbl_raw_size = new_table_size / bits_per_char;
table_type tmp(new_tbl_raw_size);
std::copy(bit_table_.begin(), bit_table_.begin() + new_tbl_raw_size, tmp.begin());
typedef table_type::iterator itr_t;
itr_t itr = bit_table_.begin() + (new_table_size / bits_per_char);
itr_t end = bit_table_.begin() + (original_table_size / bits_per_char);
itr_t itr_tmp = tmp.begin();
while (end != itr)
{
*(itr_tmp++) |= (*itr++);
}
std::swap(bit_table_, tmp);
size_list.push_back(new_table_size);
return true;
}
private:
inline void compute_indices(const bloom_type& hash, std::size_t& bit_index, std::size_t& bit) const
{
bit_index = hash;
for (std::size_t i = 0; i < size_list.size(); ++i)
{
bit_index %= size_list[i];
}
bit = bit_index % bits_per_char;
}
std::vector<unsigned long long int> size_list;
};
#endif
/*
Note 1:
If it can be guaranteed that bits_per_char will be of the form 2^n then
the following optimization can be used:
bit_table_[bit_index >> n] |= bit_mask[bit_index & (bits_per_char - 1)];
Note 2:
For performance reasons where possible when allocating memory it should
be aligned (aligned_alloc) according to the architecture being used.
*/