Evaluation codes for MS COCO caption generation.
conda create -n coco python=2.7 openjdk=8 numpy
conda activate coco
sh get_stanford_models.sh
- java 1.8.0
- python 2.7
./pycocoevalcap: The folder where all evaluation codes are stored.
- evals.py: The file includes COCOEavlCap class that can be used to evaluate results on COCO.
- tokenizer: Python wrapper of Stanford CoreNLP PTBTokenizer
- bleu: Bleu evalutation codes
- meteor: Meteor evaluation codes
- rouge: Rouge-L evaluation codes
- cider: CIDEr evaluation codes
- spice: SPICE evaluation codes
- You will first need to download the Stanford CoreNLP 3.6.0 code and models for use by SPICE. To do this, run: ./get_stanford_models.sh
- Note: SPICE will try to create a cache of parsed sentences in ./pycocoevalcap/spice/cache/. This dramatically speeds up repeated evaluations. The cache directory can be moved by setting 'CACHE_DIR' in ./pycocoevalcap/spice. In the same file, caching can be turned off by removing the '-cache' argument to 'spice_cmd'.
- Microsoft COCO Captions: Data Collection and Evaluation Server
- PTBTokenizer: We use the Stanford Tokenizer which is included in Stanford CoreNLP 3.4.1.
- BLEU: BLEU: a Method for Automatic Evaluation of Machine Translation
- Meteor: Project page with related publications. We use the latest version (1.5) of the Code. Changes have been made to the source code to properly aggreate the statistics for the entire corpus.
- Rouge-L: ROUGE: A Package for Automatic Evaluation of Summaries
- CIDEr: CIDEr: Consensus-based Image Description Evaluation
- SPICE: SPICE: Semantic Propositional Image Caption Evaluation
- Xinlei Chen (CMU)
- Hao Fang (University of Washington)
- Tsung-Yi Lin (Cornell)
- Ramakrishna Vedantam (Virgina Tech)
- David Chiang (University of Norte Dame)
- Michael Denkowski (CMU)
- Alexander Rush (Harvard University)