forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjoin.py
871 lines (767 loc) · 35.6 KB
/
join.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
"""Calculation of the least upper bound types (joins)."""
from __future__ import annotations
from typing import Sequence, overload
import mypy.typeops
from mypy.maptype import map_instance_to_supertype
from mypy.nodes import CONTRAVARIANT, COVARIANT, INVARIANT, VARIANCE_NOT_READY
from mypy.state import state
from mypy.subtypes import (
SubtypeContext,
find_member,
is_equivalent,
is_proper_subtype,
is_protocol_implementation,
is_subtype,
)
from mypy.types import (
AnyType,
CallableType,
DeletedType,
ErasedType,
FunctionLike,
Instance,
LiteralType,
NoneType,
Overloaded,
Parameters,
ParamSpecType,
PartialType,
ProperType,
TupleType,
Type,
TypeAliasType,
TypedDictType,
TypeOfAny,
TypeType,
TypeVarLikeType,
TypeVarTupleType,
TypeVarType,
TypeVisitor,
UnboundType,
UninhabitedType,
UnionType,
UnpackType,
find_unpack_in_list,
get_proper_type,
get_proper_types,
split_with_prefix_and_suffix,
)
class InstanceJoiner:
def __init__(self) -> None:
self.seen_instances: list[tuple[Instance, Instance]] = []
def join_instances(self, t: Instance, s: Instance) -> ProperType:
if (t, s) in self.seen_instances or (s, t) in self.seen_instances:
return object_from_instance(t)
self.seen_instances.append((t, s))
# Calculate the join of two instance types
if t.type == s.type:
# Simplest case: join two types with the same base type (but
# potentially different arguments).
# Combine type arguments.
args: list[Type] = []
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
if t.type.has_type_var_tuple_type:
# We handle joins of variadic instances by simply creating correct mapping
# for type arguments and compute the individual joins same as for regular
# instances. All the heavy lifting is done in the join of tuple types.
assert s.type.type_var_tuple_prefix is not None
assert s.type.type_var_tuple_suffix is not None
prefix = s.type.type_var_tuple_prefix
suffix = s.type.type_var_tuple_suffix
tvt = s.type.defn.type_vars[prefix]
assert isinstance(tvt, TypeVarTupleType)
fallback = tvt.tuple_fallback
s_prefix, s_middle, s_suffix = split_with_prefix_and_suffix(s.args, prefix, suffix)
t_prefix, t_middle, t_suffix = split_with_prefix_and_suffix(t.args, prefix, suffix)
s_args = s_prefix + (TupleType(list(s_middle), fallback),) + s_suffix
t_args = t_prefix + (TupleType(list(t_middle), fallback),) + t_suffix
else:
t_args = t.args
s_args = s.args
for ta, sa, type_var in zip(t_args, s_args, t.type.defn.type_vars):
ta_proper = get_proper_type(ta)
sa_proper = get_proper_type(sa)
new_type: Type | None = None
if isinstance(ta_proper, AnyType):
new_type = AnyType(TypeOfAny.from_another_any, ta_proper)
elif isinstance(sa_proper, AnyType):
new_type = AnyType(TypeOfAny.from_another_any, sa_proper)
elif isinstance(type_var, TypeVarType):
if type_var.variance in (COVARIANT, VARIANCE_NOT_READY):
new_type = join_types(ta, sa, self)
if len(type_var.values) != 0 and new_type not in type_var.values:
self.seen_instances.pop()
return object_from_instance(t)
if not is_subtype(new_type, type_var.upper_bound):
self.seen_instances.pop()
return object_from_instance(t)
# TODO: contravariant case should use meet but pass seen instances as
# an argument to keep track of recursive checks.
elif type_var.variance in (INVARIANT, CONTRAVARIANT):
if isinstance(ta_proper, UninhabitedType) and ta_proper.ambiguous:
new_type = sa
elif isinstance(sa_proper, UninhabitedType) and sa_proper.ambiguous:
new_type = ta
elif not is_equivalent(ta, sa):
self.seen_instances.pop()
return object_from_instance(t)
else:
# If the types are different but equivalent, then an Any is involved
# so using a join in the contravariant case is also OK.
new_type = join_types(ta, sa, self)
elif isinstance(type_var, TypeVarTupleType):
new_type = get_proper_type(join_types(ta, sa, self))
# Put the joined arguments back into instance in the normal form:
# a) Tuple[X, Y, Z] -> [X, Y, Z]
# b) tuple[X, ...] -> [*tuple[X, ...]]
if isinstance(new_type, Instance):
assert new_type.type.fullname == "builtins.tuple"
new_type = UnpackType(new_type)
else:
assert isinstance(new_type, TupleType)
args.extend(new_type.items)
continue
else:
# ParamSpec type variables behave the same, independent of variance
if not is_equivalent(ta, sa):
return get_proper_type(type_var.upper_bound)
new_type = join_types(ta, sa, self)
assert new_type is not None
args.append(new_type)
result: ProperType = Instance(t.type, args)
elif t.type.bases and is_proper_subtype(
t, s, subtype_context=SubtypeContext(ignore_type_params=True)
):
result = self.join_instances_via_supertype(t, s)
else:
# Now t is not a subtype of s, and t != s. Now s could be a subtype
# of t; alternatively, we need to find a common supertype. This works
# in of the both cases.
result = self.join_instances_via_supertype(s, t)
self.seen_instances.pop()
return result
def join_instances_via_supertype(self, t: Instance, s: Instance) -> ProperType:
# Give preference to joins via duck typing relationship, so that
# join(int, float) == float, for example.
for p in t.type._promote:
if is_subtype(p, s):
return join_types(p, s, self)
for p in s.type._promote:
if is_subtype(p, t):
return join_types(t, p, self)
# Compute the "best" supertype of t when joined with s.
# The definition of "best" may evolve; for now it is the one with
# the longest MRO. Ties are broken by using the earlier base.
best: ProperType | None = None
for base in t.type.bases:
mapped = map_instance_to_supertype(t, base.type)
res = self.join_instances(mapped, s)
if best is None or is_better(res, best):
best = res
assert best is not None
for promote in t.type._promote:
if isinstance(promote, Instance):
res = self.join_instances(promote, s)
if is_better(res, best):
best = res
return best
def join_simple(declaration: Type | None, s: Type, t: Type) -> ProperType:
"""Return a simple least upper bound given the declared type.
This function should be only used by binder, and should not recurse.
For all other uses, use `join_types()`.
"""
declaration = get_proper_type(declaration)
s = get_proper_type(s)
t = get_proper_type(t)
if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
# if types are restricted in different ways, use the more general versions
s = mypy.typeops.true_or_false(s)
t = mypy.typeops.true_or_false(t)
if isinstance(s, AnyType):
return s
if isinstance(s, ErasedType):
return t
if is_proper_subtype(s, t, ignore_promotions=True):
return t
if is_proper_subtype(t, s, ignore_promotions=True):
return s
if isinstance(declaration, UnionType):
return mypy.typeops.make_simplified_union([s, t])
if isinstance(s, NoneType) and not isinstance(t, NoneType):
s, t = t, s
if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
s, t = t, s
# Meets/joins require callable type normalization.
s, t = normalize_callables(s, t)
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
value = t.accept(TypeJoinVisitor(s))
if declaration is None or is_subtype(value, declaration):
return value
return declaration
def trivial_join(s: Type, t: Type) -> Type:
"""Return one of types (expanded) if it is a supertype of other, otherwise top type."""
if is_subtype(s, t):
return t
elif is_subtype(t, s):
return s
else:
return object_or_any_from_type(get_proper_type(t))
@overload
def join_types(
s: ProperType, t: ProperType, instance_joiner: InstanceJoiner | None = None
) -> ProperType: ...
@overload
def join_types(s: Type, t: Type, instance_joiner: InstanceJoiner | None = None) -> Type: ...
def join_types(s: Type, t: Type, instance_joiner: InstanceJoiner | None = None) -> Type:
"""Return the least upper bound of s and t.
For example, the join of 'int' and 'object' is 'object'.
"""
if mypy.typeops.is_recursive_pair(s, t):
# This case can trigger an infinite recursion, general support for this will be
# tricky so we use a trivial join (like for protocols).
return trivial_join(s, t)
s = get_proper_type(s)
t = get_proper_type(t)
if (s.can_be_true, s.can_be_false) != (t.can_be_true, t.can_be_false):
# if types are restricted in different ways, use the more general versions
s = mypy.typeops.true_or_false(s)
t = mypy.typeops.true_or_false(t)
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
if isinstance(s, AnyType):
return s
if isinstance(s, ErasedType):
return t
if isinstance(s, NoneType) and not isinstance(t, NoneType):
s, t = t, s
if isinstance(s, UninhabitedType) and not isinstance(t, UninhabitedType):
s, t = t, s
# Meets/joins require callable type normalization.
s, t = normalize_callables(s, t)
# Use a visitor to handle non-trivial cases.
return t.accept(TypeJoinVisitor(s, instance_joiner))
class TypeJoinVisitor(TypeVisitor[ProperType]):
"""Implementation of the least upper bound algorithm.
Attributes:
s: The other (left) type operand.
"""
def __init__(self, s: ProperType, instance_joiner: InstanceJoiner | None = None) -> None:
self.s = s
self.instance_joiner = instance_joiner
def visit_unbound_type(self, t: UnboundType) -> ProperType:
return AnyType(TypeOfAny.special_form)
def visit_union_type(self, t: UnionType) -> ProperType:
if is_proper_subtype(self.s, t):
return t
else:
return mypy.typeops.make_simplified_union([self.s, t])
def visit_any(self, t: AnyType) -> ProperType:
return t
def visit_none_type(self, t: NoneType) -> ProperType:
if state.strict_optional:
if isinstance(self.s, (NoneType, UninhabitedType)):
return t
elif isinstance(self.s, UnboundType):
return AnyType(TypeOfAny.special_form)
else:
return mypy.typeops.make_simplified_union([self.s, t])
else:
return self.s
def visit_uninhabited_type(self, t: UninhabitedType) -> ProperType:
return self.s
def visit_deleted_type(self, t: DeletedType) -> ProperType:
return self.s
def visit_erased_type(self, t: ErasedType) -> ProperType:
return self.s
def visit_type_var(self, t: TypeVarType) -> ProperType:
if isinstance(self.s, TypeVarType) and self.s.id == t.id:
return self.s
else:
return self.default(self.s)
def visit_param_spec(self, t: ParamSpecType) -> ProperType:
if self.s == t:
return t
return self.default(self.s)
def visit_type_var_tuple(self, t: TypeVarTupleType) -> ProperType:
if self.s == t:
return t
return self.default(self.s)
def visit_unpack_type(self, t: UnpackType) -> UnpackType:
raise NotImplementedError
def visit_parameters(self, t: Parameters) -> ProperType:
if isinstance(self.s, Parameters):
if len(t.arg_types) != len(self.s.arg_types):
return self.default(self.s)
from mypy.meet import meet_types
return t.copy_modified(
arg_types=[
meet_types(s_a, t_a) for s_a, t_a in zip(self.s.arg_types, t.arg_types)
],
arg_names=combine_arg_names(self.s, t),
)
else:
return self.default(self.s)
def visit_instance(self, t: Instance) -> ProperType:
if isinstance(self.s, Instance):
if self.instance_joiner is None:
self.instance_joiner = InstanceJoiner()
nominal = self.instance_joiner.join_instances(t, self.s)
structural: Instance | None = None
if t.type.is_protocol and is_protocol_implementation(self.s, t):
structural = t
elif self.s.type.is_protocol and is_protocol_implementation(t, self.s):
structural = self.s
# Structural join is preferred in the case where we have found both
# structural and nominal and they have same MRO length (see two comments
# in join_instances_via_supertype). Otherwise, just return the nominal join.
if not structural or is_better(nominal, structural):
return nominal
return structural
elif isinstance(self.s, FunctionLike):
if t.type.is_protocol:
call = unpack_callback_protocol(t)
if call:
return join_types(call, self.s)
return join_types(t, self.s.fallback)
elif isinstance(self.s, TypeType):
return join_types(t, self.s)
elif isinstance(self.s, TypedDictType):
return join_types(t, self.s)
elif isinstance(self.s, TupleType):
return join_types(t, self.s)
elif isinstance(self.s, LiteralType):
return join_types(t, self.s)
else:
return self.default(self.s)
def visit_callable_type(self, t: CallableType) -> ProperType:
if isinstance(self.s, CallableType) and is_similar_callables(t, self.s):
if is_equivalent(t, self.s):
return combine_similar_callables(t, self.s)
result = join_similar_callables(t, self.s)
# We set the from_type_type flag to suppress error when a collection of
# concrete class objects gets inferred as their common abstract superclass.
if not (
(t.is_type_obj() and t.type_object().is_abstract)
or (self.s.is_type_obj() and self.s.type_object().is_abstract)
):
result.from_type_type = True
if any(
isinstance(tp, (NoneType, UninhabitedType))
for tp in get_proper_types(result.arg_types)
):
# We don't want to return unusable Callable, attempt fallback instead.
return join_types(t.fallback, self.s)
return result
elif isinstance(self.s, Overloaded):
# Switch the order of arguments to that we'll get to visit_overloaded.
return join_types(t, self.s)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = unpack_callback_protocol(self.s)
if call:
return join_types(t, call)
return join_types(t.fallback, self.s)
def visit_overloaded(self, t: Overloaded) -> ProperType:
# This is more complex than most other cases. Here are some
# examples that illustrate how this works.
#
# First let's define a concise notation:
# - Cn are callable types (for n in 1, 2, ...)
# - Ov(C1, C2, ...) is an overloaded type with items C1, C2, ...
# - Callable[[T, ...], S] is written as [T, ...] -> S.
#
# We want some basic properties to hold (assume Cn are all
# unrelated via Any-similarity):
#
# join(Ov(C1, C2), C1) == C1
# join(Ov(C1, C2), Ov(C1, C2)) == Ov(C1, C2)
# join(Ov(C1, C2), Ov(C1, C3)) == C1
# join(Ov(C2, C2), C3) == join of fallback types
#
# The presence of Any types makes things more interesting. The join is the
# most general type we can get with respect to Any:
#
# join(Ov([int] -> int, [str] -> str), [Any] -> str) == Any -> str
#
# We could use a simplification step that removes redundancies, but that's not
# implemented right now. Consider this example, where we get a redundancy:
#
# join(Ov([int, Any] -> Any, [str, Any] -> Any), [Any, int] -> Any) ==
# Ov([Any, int] -> Any, [Any, int] -> Any)
#
# TODO: Consider more cases of callable subtyping.
result: list[CallableType] = []
s = self.s
if isinstance(s, FunctionLike):
# The interesting case where both types are function types.
for t_item in t.items:
for s_item in s.items:
if is_similar_callables(t_item, s_item):
if is_equivalent(t_item, s_item):
result.append(combine_similar_callables(t_item, s_item))
elif is_subtype(t_item, s_item):
result.append(s_item)
if result:
# TODO: Simplify redundancies from the result.
if len(result) == 1:
return result[0]
else:
return Overloaded(result)
return join_types(t.fallback, s.fallback)
elif isinstance(s, Instance) and s.type.is_protocol:
call = unpack_callback_protocol(s)
if call:
return join_types(t, call)
return join_types(t.fallback, s)
def join_tuples(self, s: TupleType, t: TupleType) -> list[Type] | None:
"""Join two tuple types while handling variadic entries.
This is surprisingly tricky, and we don't handle some tricky corner cases.
Most of the trickiness comes from the variadic tuple items like *tuple[X, ...]
since they can have arbitrary partial overlaps (while *Ts can't be split).
"""
s_unpack_index = find_unpack_in_list(s.items)
t_unpack_index = find_unpack_in_list(t.items)
if s_unpack_index is None and t_unpack_index is None:
if s.length() == t.length():
items: list[Type] = []
for i in range(t.length()):
items.append(join_types(t.items[i], s.items[i]))
return items
return None
if s_unpack_index is not None and t_unpack_index is not None:
# The most complex case: both tuples have an upack item.
s_unpack = s.items[s_unpack_index]
assert isinstance(s_unpack, UnpackType)
s_unpacked = get_proper_type(s_unpack.type)
t_unpack = t.items[t_unpack_index]
assert isinstance(t_unpack, UnpackType)
t_unpacked = get_proper_type(t_unpack.type)
if s.length() == t.length() and s_unpack_index == t_unpack_index:
# We can handle a case where arity is perfectly aligned, e.g.
# join(Tuple[X1, *tuple[Y1, ...], Z1], Tuple[X2, *tuple[Y2, ...], Z2]).
# We can essentially perform the join elementwise.
prefix_len = t_unpack_index
suffix_len = t.length() - t_unpack_index - 1
items = []
for si, ti in zip(s.items[:prefix_len], t.items[:prefix_len]):
items.append(join_types(si, ti))
joined = join_types(s_unpacked, t_unpacked)
if isinstance(joined, TypeVarTupleType):
items.append(UnpackType(joined))
elif isinstance(joined, Instance) and joined.type.fullname == "builtins.tuple":
items.append(UnpackType(joined))
else:
if isinstance(t_unpacked, Instance):
assert t_unpacked.type.fullname == "builtins.tuple"
tuple_instance = t_unpacked
else:
assert isinstance(t_unpacked, TypeVarTupleType)
tuple_instance = t_unpacked.tuple_fallback
items.append(
UnpackType(
tuple_instance.copy_modified(
args=[object_from_instance(tuple_instance)]
)
)
)
if suffix_len:
for si, ti in zip(s.items[-suffix_len:], t.items[-suffix_len:]):
items.append(join_types(si, ti))
return items
if s.length() == 1 or t.length() == 1:
# Another case we can handle is when one of tuple is purely variadic
# (i.e. a non-normalized form of tuple[X, ...]), in this case the join
# will be again purely variadic.
if not (isinstance(s_unpacked, Instance) and isinstance(t_unpacked, Instance)):
return None
assert s_unpacked.type.fullname == "builtins.tuple"
assert t_unpacked.type.fullname == "builtins.tuple"
mid_joined = join_types(s_unpacked.args[0], t_unpacked.args[0])
t_other = [a for i, a in enumerate(t.items) if i != t_unpack_index]
s_other = [a for i, a in enumerate(s.items) if i != s_unpack_index]
other_joined = join_type_list(s_other + t_other)
mid_joined = join_types(mid_joined, other_joined)
return [UnpackType(s_unpacked.copy_modified(args=[mid_joined]))]
# TODO: are there other case we can handle (e.g. both prefix/suffix are shorter)?
return None
if s_unpack_index is not None:
variadic = s
unpack_index = s_unpack_index
fixed = t
else:
assert t_unpack_index is not None
variadic = t
unpack_index = t_unpack_index
fixed = s
# Case where one tuple has variadic item and the other one doesn't. The join will
# be variadic, since fixed tuple is a subtype of variadic, but not vice versa.
unpack = variadic.items[unpack_index]
assert isinstance(unpack, UnpackType)
unpacked = get_proper_type(unpack.type)
if not isinstance(unpacked, Instance):
return None
if fixed.length() < variadic.length() - 1:
# There are no non-trivial types that are supertype of both.
return None
prefix_len = unpack_index
suffix_len = variadic.length() - prefix_len - 1
prefix, middle, suffix = split_with_prefix_and_suffix(
tuple(fixed.items), prefix_len, suffix_len
)
items = []
for fi, vi in zip(prefix, variadic.items[:prefix_len]):
items.append(join_types(fi, vi))
mid_joined = join_type_list(list(middle))
mid_joined = join_types(mid_joined, unpacked.args[0])
items.append(UnpackType(unpacked.copy_modified(args=[mid_joined])))
if suffix_len:
for fi, vi in zip(suffix, variadic.items[-suffix_len:]):
items.append(join_types(fi, vi))
return items
def visit_tuple_type(self, t: TupleType) -> ProperType:
# When given two fixed-length tuples:
# * If they have the same length, join their subtypes item-wise:
# Tuple[int, bool] + Tuple[bool, bool] becomes Tuple[int, bool]
# * If lengths do not match, return a variadic tuple:
# Tuple[bool, int] + Tuple[bool] becomes Tuple[int, ...]
#
# Otherwise, `t` is a fixed-length tuple but `self.s` is NOT:
# * Joining with a variadic tuple returns variadic tuple:
# Tuple[int, bool] + Tuple[bool, ...] becomes Tuple[int, ...]
# * Joining with any Sequence also returns a Sequence:
# Tuple[int, bool] + List[bool] becomes Sequence[int]
if isinstance(self.s, TupleType):
if self.instance_joiner is None:
self.instance_joiner = InstanceJoiner()
fallback = self.instance_joiner.join_instances(
mypy.typeops.tuple_fallback(self.s), mypy.typeops.tuple_fallback(t)
)
assert isinstance(fallback, Instance)
items = self.join_tuples(self.s, t)
if items is not None:
return TupleType(items, fallback)
else:
# TODO: should this be a default fallback behaviour like for meet?
if is_proper_subtype(self.s, t):
return t
if is_proper_subtype(t, self.s):
return self.s
return fallback
else:
return join_types(self.s, mypy.typeops.tuple_fallback(t))
def visit_typeddict_type(self, t: TypedDictType) -> ProperType:
if isinstance(self.s, TypedDictType):
items = {
item_name: s_item_type
for (item_name, s_item_type, t_item_type) in self.s.zip(t)
if (
is_equivalent(s_item_type, t_item_type)
and (item_name in t.required_keys) == (item_name in self.s.required_keys)
)
}
fallback = self.s.create_anonymous_fallback()
# We need to filter by items.keys() since some required keys present in both t and
# self.s might be missing from the join if the types are incompatible.
required_keys = set(items.keys()) & t.required_keys & self.s.required_keys
return TypedDictType(items, required_keys, fallback)
elif isinstance(self.s, Instance):
return join_types(self.s, t.fallback)
else:
return self.default(self.s)
def visit_literal_type(self, t: LiteralType) -> ProperType:
if isinstance(self.s, LiteralType):
if t == self.s:
return t
if self.s.fallback.type.is_enum and t.fallback.type.is_enum:
return mypy.typeops.make_simplified_union([self.s, t])
return join_types(self.s.fallback, t.fallback)
else:
return join_types(self.s, t.fallback)
def visit_partial_type(self, t: PartialType) -> ProperType:
# We only have partial information so we can't decide the join result. We should
# never get here.
assert False, "Internal error"
def visit_type_type(self, t: TypeType) -> ProperType:
if isinstance(self.s, TypeType):
return TypeType.make_normalized(join_types(t.item, self.s.item), line=t.line)
elif isinstance(self.s, Instance) and self.s.type.fullname == "builtins.type":
return self.s
else:
return self.default(self.s)
def visit_type_alias_type(self, t: TypeAliasType) -> ProperType:
assert False, f"This should be never called, got {t}"
def default(self, typ: Type) -> ProperType:
typ = get_proper_type(typ)
if isinstance(typ, Instance):
return object_from_instance(typ)
elif isinstance(typ, UnboundType):
return AnyType(TypeOfAny.special_form)
elif isinstance(typ, TupleType):
return self.default(mypy.typeops.tuple_fallback(typ))
elif isinstance(typ, TypedDictType):
return self.default(typ.fallback)
elif isinstance(typ, FunctionLike):
return self.default(typ.fallback)
elif isinstance(typ, TypeVarType):
return self.default(typ.upper_bound)
elif isinstance(typ, ParamSpecType):
return self.default(typ.upper_bound)
else:
return AnyType(TypeOfAny.special_form)
def is_better(t: Type, s: Type) -> bool:
# Given two possible results from join_instances_via_supertype(),
# indicate whether t is the better one.
t = get_proper_type(t)
s = get_proper_type(s)
if isinstance(t, Instance):
if not isinstance(s, Instance):
return True
# Use len(mro) as a proxy for the better choice.
if len(t.type.mro) > len(s.type.mro):
return True
return False
def normalize_callables(s: ProperType, t: ProperType) -> tuple[ProperType, ProperType]:
if isinstance(s, (CallableType, Overloaded)):
s = s.with_unpacked_kwargs()
if isinstance(t, (CallableType, Overloaded)):
t = t.with_unpacked_kwargs()
return s, t
def is_similar_callables(t: CallableType, s: CallableType) -> bool:
"""Return True if t and s have identical numbers of
arguments, default arguments and varargs.
"""
return (
len(t.arg_types) == len(s.arg_types)
and t.min_args == s.min_args
and t.is_var_arg == s.is_var_arg
)
def join_similar_callables(t: CallableType, s: CallableType) -> CallableType:
arg_types: list[Type] = []
for i in range(len(t.arg_types)):
arg_types.append(safe_meet(t.arg_types[i], s.arg_types[i]))
# TODO in combine_similar_callables also applies here (names and kinds; user metaclasses)
# The fallback type can be either 'function', 'type', or some user-provided metaclass.
# The result should always use 'function' as a fallback if either operands are using it.
if t.fallback.type.fullname == "builtins.function":
fallback = t.fallback
else:
fallback = s.fallback
return t.copy_modified(
arg_types=arg_types,
arg_names=combine_arg_names(t, s),
ret_type=join_types(t.ret_type, s.ret_type),
fallback=fallback,
name=None,
)
def safe_join(t: Type, s: Type) -> Type:
# This is a temporary solution to prevent crashes in combine_similar_callables() etc.,
# until relevant TODOs on handling arg_kinds will be addressed there.
if not isinstance(t, UnpackType) and not isinstance(s, UnpackType):
return join_types(t, s)
if isinstance(t, UnpackType) and isinstance(s, UnpackType):
return UnpackType(join_types(t.type, s.type))
return object_or_any_from_type(get_proper_type(t))
def safe_meet(t: Type, s: Type) -> Type:
# Similar to above but for meet_types().
from mypy.meet import meet_types
if not isinstance(t, UnpackType) and not isinstance(s, UnpackType):
return meet_types(t, s)
if isinstance(t, UnpackType) and isinstance(s, UnpackType):
unpacked = get_proper_type(t.type)
if isinstance(unpacked, TypeVarTupleType):
fallback_type = unpacked.tuple_fallback.type
elif isinstance(unpacked, TupleType):
fallback_type = unpacked.partial_fallback.type
else:
assert isinstance(unpacked, Instance) and unpacked.type.fullname == "builtins.tuple"
fallback_type = unpacked.type
res = meet_types(t.type, s.type)
if isinstance(res, UninhabitedType):
res = Instance(fallback_type, [res])
return UnpackType(res)
return UninhabitedType()
def combine_similar_callables(t: CallableType, s: CallableType) -> CallableType:
arg_types: list[Type] = []
for i in range(len(t.arg_types)):
arg_types.append(safe_join(t.arg_types[i], s.arg_types[i]))
# TODO kinds and argument names
# TODO what should happen if one fallback is 'type' and the other is a user-provided metaclass?
# The fallback type can be either 'function', 'type', or some user-provided metaclass.
# The result should always use 'function' as a fallback if either operands are using it.
if t.fallback.type.fullname == "builtins.function":
fallback = t.fallback
else:
fallback = s.fallback
return t.copy_modified(
arg_types=arg_types,
arg_names=combine_arg_names(t, s),
ret_type=join_types(t.ret_type, s.ret_type),
fallback=fallback,
name=None,
)
def combine_arg_names(
t: CallableType | Parameters, s: CallableType | Parameters
) -> list[str | None]:
"""Produces a list of argument names compatible with both callables.
For example, suppose 't' and 's' have the following signatures:
- t: (a: int, b: str, X: str) -> None
- s: (a: int, b: str, Y: str) -> None
This function would return ["a", "b", None]. This information
is then used above to compute the join of t and s, which results
in a signature of (a: int, b: str, str) -> None.
Note that the third argument's name is omitted and 't' and 's'
are both valid subtypes of this inferred signature.
Precondition: is_similar_types(t, s) is true.
"""
num_args = len(t.arg_types)
new_names = []
for i in range(num_args):
t_name = t.arg_names[i]
s_name = s.arg_names[i]
if t_name == s_name or t.arg_kinds[i].is_named() or s.arg_kinds[i].is_named():
new_names.append(t_name)
else:
new_names.append(None)
return new_names
def object_from_instance(instance: Instance) -> Instance:
"""Construct the type 'builtins.object' from an instance type."""
# Use the fact that 'object' is always the last class in the mro.
res = Instance(instance.type.mro[-1], [])
return res
def object_or_any_from_type(typ: ProperType) -> ProperType:
# Similar to object_from_instance() but tries hard for all types.
# TODO: find a better way to get object, or make this more reliable.
if isinstance(typ, Instance):
return object_from_instance(typ)
elif isinstance(typ, (CallableType, TypedDictType, LiteralType)):
return object_from_instance(typ.fallback)
elif isinstance(typ, TupleType):
return object_from_instance(typ.partial_fallback)
elif isinstance(typ, TypeType):
return object_or_any_from_type(typ.item)
elif isinstance(typ, TypeVarLikeType) and isinstance(typ.upper_bound, ProperType):
return object_or_any_from_type(typ.upper_bound)
elif isinstance(typ, UnionType):
for item in typ.items:
if isinstance(item, ProperType):
candidate = object_or_any_from_type(item)
if isinstance(candidate, Instance):
return candidate
elif isinstance(typ, UnpackType):
object_or_any_from_type(get_proper_type(typ.type))
return AnyType(TypeOfAny.implementation_artifact)
def join_type_list(types: Sequence[Type]) -> Type:
if not types:
# This is a little arbitrary but reasonable. Any empty tuple should be compatible
# with all variable length tuples, and this makes it possible.
return UninhabitedType()
joined = types[0]
for t in types[1:]:
joined = join_types(joined, t)
return joined
def unpack_callback_protocol(t: Instance) -> ProperType | None:
assert t.type.is_protocol
if t.type.protocol_members == ["__call__"]:
return get_proper_type(find_member("__call__", t, t, is_operator=True))
return None