forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstraints.py
1636 lines (1476 loc) · 74.5 KB
/
constraints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Type inference constraints."""
from __future__ import annotations
from typing import TYPE_CHECKING, Final, Iterable, List, Sequence
import mypy.subtypes
import mypy.typeops
from mypy.argmap import ArgTypeExpander
from mypy.erasetype import erase_typevars
from mypy.maptype import map_instance_to_supertype
from mypy.nodes import (
ARG_OPT,
ARG_POS,
ARG_STAR,
ARG_STAR2,
CONTRAVARIANT,
COVARIANT,
ArgKind,
TypeInfo,
)
from mypy.types import (
TUPLE_LIKE_INSTANCE_NAMES,
AnyType,
CallableType,
DeletedType,
ErasedType,
Instance,
LiteralType,
NoneType,
NormalizedCallableType,
Overloaded,
Parameters,
ParamSpecType,
PartialType,
ProperType,
TupleType,
Type,
TypeAliasType,
TypedDictType,
TypeOfAny,
TypeQuery,
TypeType,
TypeVarId,
TypeVarLikeType,
TypeVarTupleType,
TypeVarType,
TypeVisitor,
UnboundType,
UninhabitedType,
UnionType,
UnpackType,
find_unpack_in_list,
get_proper_type,
has_recursive_types,
has_type_vars,
is_named_instance,
split_with_prefix_and_suffix,
)
from mypy.types_utils import is_union_with_any
from mypy.typestate import type_state
if TYPE_CHECKING:
from mypy.infer import ArgumentInferContext
SUBTYPE_OF: Final = 0
SUPERTYPE_OF: Final = 1
class Constraint:
"""A representation of a type constraint.
It can be either T <: type or T :> type (T is a type variable).
"""
type_var: TypeVarId
op = 0 # SUBTYPE_OF or SUPERTYPE_OF
target: Type
def __init__(self, type_var: TypeVarLikeType, op: int, target: Type) -> None:
self.type_var = type_var.id
self.op = op
# TODO: should we add "assert not isinstance(target, UnpackType)"?
# UnpackType is a synthetic type, and is never valid as a constraint target.
self.target = target
self.origin_type_var = type_var
# These are additional type variables that should be solved for together with type_var.
# TODO: A cleaner solution may be to modify the return type of infer_constraints()
# to include these instead, but this is a rather big refactoring.
self.extra_tvars: list[TypeVarLikeType] = []
def __repr__(self) -> str:
op_str = "<:"
if self.op == SUPERTYPE_OF:
op_str = ":>"
return f"{self.type_var} {op_str} {self.target}"
def __hash__(self) -> int:
return hash((self.type_var, self.op, self.target))
def __eq__(self, other: object) -> bool:
if not isinstance(other, Constraint):
return False
return (self.type_var, self.op, self.target) == (other.type_var, other.op, other.target)
def infer_constraints_for_callable(
callee: CallableType,
arg_types: Sequence[Type | None],
arg_kinds: list[ArgKind],
arg_names: Sequence[str | None] | None,
formal_to_actual: list[list[int]],
context: ArgumentInferContext,
) -> list[Constraint]:
"""Infer type variable constraints for a callable and actual arguments.
Return a list of constraints.
"""
constraints: list[Constraint] = []
mapper = ArgTypeExpander(context)
param_spec = callee.param_spec()
param_spec_arg_types = []
param_spec_arg_names = []
param_spec_arg_kinds = []
incomplete_star_mapping = False
for i, actuals in enumerate(formal_to_actual):
for actual in actuals:
if actual is None and callee.arg_kinds[i] in (ARG_STAR, ARG_STAR2):
# We can't use arguments to infer ParamSpec constraint, if only some
# are present in the current inference pass.
incomplete_star_mapping = True
break
for i, actuals in enumerate(formal_to_actual):
if isinstance(callee.arg_types[i], UnpackType):
unpack_type = callee.arg_types[i]
assert isinstance(unpack_type, UnpackType)
# In this case we are binding all the actuals to *args,
# and we want a constraint that the typevar tuple being unpacked
# is equal to a type list of all the actuals.
actual_types = []
unpacked_type = get_proper_type(unpack_type.type)
if isinstance(unpacked_type, TypeVarTupleType):
tuple_instance = unpacked_type.tuple_fallback
elif isinstance(unpacked_type, TupleType):
tuple_instance = unpacked_type.partial_fallback
else:
assert False, "mypy bug: unhandled constraint inference case"
for actual in actuals:
actual_arg_type = arg_types[actual]
if actual_arg_type is None:
continue
expanded_actual = mapper.expand_actual_type(
actual_arg_type,
arg_kinds[actual],
callee.arg_names[i],
callee.arg_kinds[i],
allow_unpack=True,
)
if arg_kinds[actual] != ARG_STAR or isinstance(
get_proper_type(actual_arg_type), TupleType
):
actual_types.append(expanded_actual)
else:
# If we are expanding an iterable inside * actual, append a homogeneous item instead
actual_types.append(
UnpackType(tuple_instance.copy_modified(args=[expanded_actual]))
)
if isinstance(unpacked_type, TypeVarTupleType):
constraints.append(
Constraint(
unpacked_type,
SUPERTYPE_OF,
TupleType(actual_types, unpacked_type.tuple_fallback),
)
)
elif isinstance(unpacked_type, TupleType):
# Prefixes get converted to positional args, so technically the only case we
# should have here is like Tuple[Unpack[Ts], Y1, Y2, Y3]. If this turns out
# not to hold we can always handle the prefixes too.
inner_unpack = unpacked_type.items[0]
assert isinstance(inner_unpack, UnpackType)
inner_unpacked_type = get_proper_type(inner_unpack.type)
suffix_len = len(unpacked_type.items) - 1
if isinstance(inner_unpacked_type, TypeVarTupleType):
# Variadic item can be either *Ts...
constraints.append(
Constraint(
inner_unpacked_type,
SUPERTYPE_OF,
TupleType(
actual_types[:-suffix_len], inner_unpacked_type.tuple_fallback
),
)
)
else:
# ...or it can be a homogeneous tuple.
assert (
isinstance(inner_unpacked_type, Instance)
and inner_unpacked_type.type.fullname == "builtins.tuple"
)
for at in actual_types[:-suffix_len]:
constraints.extend(
infer_constraints(inner_unpacked_type.args[0], at, SUPERTYPE_OF)
)
# Now handle the suffix (if any).
if suffix_len:
for tt, at in zip(unpacked_type.items[1:], actual_types[-suffix_len:]):
constraints.extend(infer_constraints(tt, at, SUPERTYPE_OF))
else:
assert False, "mypy bug: unhandled constraint inference case"
else:
for actual in actuals:
actual_arg_type = arg_types[actual]
if actual_arg_type is None:
continue
actual_type = mapper.expand_actual_type(
actual_arg_type, arg_kinds[actual], callee.arg_names[i], callee.arg_kinds[i]
)
if param_spec and callee.arg_kinds[i] in (ARG_STAR, ARG_STAR2):
# If actual arguments are mapped to ParamSpec type, we can't infer individual
# constraints, instead store them and infer single constraint at the end.
# It is impossible to map actual kind to formal kind, so use some heuristic.
# This inference is used as a fallback, so relying on heuristic should be OK.
if not incomplete_star_mapping:
param_spec_arg_types.append(
mapper.expand_actual_type(
actual_arg_type, arg_kinds[actual], None, arg_kinds[actual]
)
)
actual_kind = arg_kinds[actual]
param_spec_arg_kinds.append(
ARG_POS if actual_kind not in (ARG_STAR, ARG_STAR2) else actual_kind
)
param_spec_arg_names.append(arg_names[actual] if arg_names else None)
else:
c = infer_constraints(callee.arg_types[i], actual_type, SUPERTYPE_OF)
constraints.extend(c)
if (
param_spec
and not any(c.type_var == param_spec.id for c in constraints)
and not incomplete_star_mapping
):
# Use ParamSpec constraint from arguments only if there are no other constraints,
# since as explained above it is quite ad-hoc.
constraints.append(
Constraint(
param_spec,
SUPERTYPE_OF,
Parameters(
arg_types=param_spec_arg_types,
arg_kinds=param_spec_arg_kinds,
arg_names=param_spec_arg_names,
imprecise_arg_kinds=True,
),
)
)
if any(isinstance(v, ParamSpecType) for v in callee.variables):
# As a perf optimization filter imprecise constraints only when we can have them.
constraints = filter_imprecise_kinds(constraints)
return constraints
def infer_constraints(
template: Type, actual: Type, direction: int, skip_neg_op: bool = False
) -> list[Constraint]:
"""Infer type constraints.
Match a template type, which may contain type variable references,
recursively against a type which does not contain (the same) type
variable references. The result is a list of type constrains of
form 'T is a supertype/subtype of x', where T is a type variable
present in the template and x is a type without reference to type
variables present in the template.
Assume T and S are type variables. Now the following results can be
calculated (read as '(template, actual) --> result'):
(T, X) --> T :> X
(X[T], X[Y]) --> T <: Y and T :> Y
((T, T), (X, Y)) --> T :> X and T :> Y
((T, S), (X, Y)) --> T :> X and S :> Y
(X[T], Any) --> T <: Any and T :> Any
The constraints are represented as Constraint objects. If skip_neg_op == True,
then skip adding reverse (polymorphic) constraints (since this is already a call
to infer such constraints).
"""
if any(
get_proper_type(template) == get_proper_type(t)
and get_proper_type(actual) == get_proper_type(a)
for (t, a) in reversed(type_state.inferring)
):
return []
if has_recursive_types(template) or isinstance(get_proper_type(template), Instance):
# This case requires special care because it may cause infinite recursion.
# Note that we include Instances because the may be recursive as str(Sequence[str]).
if not has_type_vars(template):
# Return early on an empty branch.
return []
type_state.inferring.append((template, actual))
res = _infer_constraints(template, actual, direction, skip_neg_op)
type_state.inferring.pop()
return res
return _infer_constraints(template, actual, direction, skip_neg_op)
def _infer_constraints(
template: Type, actual: Type, direction: int, skip_neg_op: bool
) -> list[Constraint]:
orig_template = template
template = get_proper_type(template)
actual = get_proper_type(actual)
# Type inference shouldn't be affected by whether union types have been simplified.
# We however keep any ErasedType items, so that the caller will see it when using
# checkexpr.has_erased_component().
if isinstance(template, UnionType):
template = mypy.typeops.make_simplified_union(template.items, keep_erased=True)
if isinstance(actual, UnionType):
actual = mypy.typeops.make_simplified_union(actual.items, keep_erased=True)
# Ignore Any types from the type suggestion engine to avoid them
# causing us to infer Any in situations where a better job could
# be done otherwise. (This can produce false positives but that
# doesn't really matter because it is all heuristic anyway.)
if isinstance(actual, AnyType) and actual.type_of_any == TypeOfAny.suggestion_engine:
return []
# If the template is simply a type variable, emit a Constraint directly.
# We need to handle this case before handling Unions for two reasons:
# 1. "T <: Union[U1, U2]" is not equivalent to "T <: U1 or T <: U2",
# because T can itself be a union (notably, Union[U1, U2] itself).
# 2. "T :> Union[U1, U2]" is logically equivalent to "T :> U1 and
# T :> U2", but they are not equivalent to the constraint solver,
# which never introduces new Union types (it uses join() instead).
if isinstance(template, TypeVarType):
return [Constraint(template, direction, actual)]
if (
isinstance(actual, TypeVarType)
and not actual.id.is_meta_var()
and direction == SUPERTYPE_OF
):
# Unless template is also a type variable (or a union that contains one), using the upper
# bound for inference will usually give better result for actual that is a type variable.
if not isinstance(template, UnionType) or not any(
isinstance(t, TypeVarType) for t in template.items
):
actual = get_proper_type(actual.upper_bound)
# Now handle the case of either template or actual being a Union.
# For a Union to be a subtype of another type, every item of the Union
# must be a subtype of that type, so concatenate the constraints.
if direction == SUBTYPE_OF and isinstance(template, UnionType):
res = []
for t_item in template.items:
res.extend(infer_constraints(t_item, actual, direction))
return res
if direction == SUPERTYPE_OF and isinstance(actual, UnionType):
res = []
for a_item in actual.items:
res.extend(infer_constraints(orig_template, a_item, direction))
return res
# Now the potential subtype is known not to be a Union or a type
# variable that we are solving for. In that case, for a Union to
# be a supertype of the potential subtype, some item of the Union
# must be a supertype of it.
if direction == SUBTYPE_OF and isinstance(actual, UnionType):
# If some of items is not a complete type, disregard that.
items = simplify_away_incomplete_types(actual.items)
# We infer constraints eagerly -- try to find constraints for a type
# variable if possible. This seems to help with some real-world
# use cases.
return any_constraints(
[infer_constraints_if_possible(template, a_item, direction) for a_item in items],
eager=True,
)
if direction == SUPERTYPE_OF and isinstance(template, UnionType):
# When the template is a union, we are okay with leaving some
# type variables indeterminate. This helps with some special
# cases, though this isn't very principled.
result = any_constraints(
[
infer_constraints_if_possible(t_item, actual, direction)
for t_item in template.items
],
eager=False,
)
if result:
return result
elif has_recursive_types(template) and not has_recursive_types(actual):
return handle_recursive_union(template, actual, direction)
return []
# Remaining cases are handled by ConstraintBuilderVisitor.
return template.accept(ConstraintBuilderVisitor(actual, direction, skip_neg_op))
def infer_constraints_if_possible(
template: Type, actual: Type, direction: int
) -> list[Constraint] | None:
"""Like infer_constraints, but return None if the input relation is
known to be unsatisfiable, for example if template=List[T] and actual=int.
(In this case infer_constraints would return [], just like it would for
an automatically satisfied relation like template=List[T] and actual=object.)
"""
if direction == SUBTYPE_OF and not mypy.subtypes.is_subtype(erase_typevars(template), actual):
return None
if direction == SUPERTYPE_OF and not mypy.subtypes.is_subtype(
actual, erase_typevars(template)
):
return None
if (
direction == SUPERTYPE_OF
and isinstance(template, TypeVarType)
and not mypy.subtypes.is_subtype(actual, erase_typevars(template.upper_bound))
):
# This is not caught by the above branch because of the erase_typevars() call,
# that would return 'Any' for a type variable.
return None
return infer_constraints(template, actual, direction)
def select_trivial(options: Sequence[list[Constraint] | None]) -> list[list[Constraint]]:
"""Select only those lists where each item is a constraint against Any."""
res = []
for option in options:
if option is None:
continue
if all(isinstance(get_proper_type(c.target), AnyType) for c in option):
res.append(option)
return res
def merge_with_any(constraint: Constraint) -> Constraint:
"""Transform a constraint target into a union with given Any type."""
target = constraint.target
if is_union_with_any(target):
# Do not produce redundant unions.
return constraint
# TODO: if we will support multiple sources Any, use this here instead.
any_type = AnyType(TypeOfAny.implementation_artifact)
return Constraint(
constraint.origin_type_var,
constraint.op,
UnionType.make_union([target, any_type], target.line, target.column),
)
def handle_recursive_union(template: UnionType, actual: Type, direction: int) -> list[Constraint]:
# This is a hack to special-case things like Union[T, Inst[T]] in recursive types. Although
# it is quite arbitrary, it is a relatively common pattern, so we should handle it well.
# This function may be called when inferring against such union resulted in different
# constraints for each item. Normally we give up in such case, but here we instead split
# the union in two parts, and try inferring sequentially.
non_type_var_items = [t for t in template.items if not isinstance(t, TypeVarType)]
type_var_items = [t for t in template.items if isinstance(t, TypeVarType)]
return infer_constraints(
UnionType.make_union(non_type_var_items), actual, direction
) or infer_constraints(UnionType.make_union(type_var_items), actual, direction)
def any_constraints(options: list[list[Constraint] | None], eager: bool) -> list[Constraint]:
"""Deduce what we can from a collection of constraint lists.
It's a given that at least one of the lists must be satisfied. A
None element in the list of options represents an unsatisfiable
constraint and is ignored. Ignore empty constraint lists if eager
is true -- they are always trivially satisfiable.
"""
if eager:
valid_options = [option for option in options if option]
else:
valid_options = [option for option in options if option is not None]
if not valid_options:
return []
if len(valid_options) == 1:
return valid_options[0]
if all(is_same_constraints(valid_options[0], c) for c in valid_options[1:]):
# Multiple sets of constraints that are all the same. Just pick any one of them.
return valid_options[0]
if all(is_similar_constraints(valid_options[0], c) for c in valid_options[1:]):
# All options have same structure. In this case we can merge-in trivial
# options (i.e. those that only have Any) and try again.
# TODO: More generally, if a given (variable, direction) pair appears in
# every option, combine the bounds with meet/join always, not just for Any.
trivial_options = select_trivial(valid_options)
if trivial_options and len(trivial_options) < len(valid_options):
merged_options = []
for option in valid_options:
if option in trivial_options:
continue
if option is not None:
merged_option: list[Constraint] | None = [merge_with_any(c) for c in option]
else:
merged_option = None
merged_options.append(merged_option)
return any_constraints(list(merged_options), eager)
# If normal logic didn't work, try excluding trivially unsatisfiable constraint (due to
# upper bounds) from each option, and comparing them again.
filtered_options = [filter_satisfiable(o) for o in options]
if filtered_options != options:
return any_constraints(filtered_options, eager=eager)
# Otherwise, there are either no valid options or multiple, inconsistent valid
# options. Give up and deduce nothing.
return []
def filter_satisfiable(option: list[Constraint] | None) -> list[Constraint] | None:
"""Keep only constraints that can possibly be satisfied.
Currently, we filter out constraints where target is not a subtype of the upper bound.
Since those can be never satisfied. We may add more cases in future if it improves type
inference.
"""
if not option:
return option
satisfiable = []
for c in option:
if isinstance(c.origin_type_var, TypeVarType) and c.origin_type_var.values:
if any(
mypy.subtypes.is_subtype(c.target, value) for value in c.origin_type_var.values
):
satisfiable.append(c)
elif mypy.subtypes.is_subtype(c.target, c.origin_type_var.upper_bound):
satisfiable.append(c)
if not satisfiable:
return None
return satisfiable
def is_same_constraints(x: list[Constraint], y: list[Constraint]) -> bool:
for c1 in x:
if not any(is_same_constraint(c1, c2) for c2 in y):
return False
for c1 in y:
if not any(is_same_constraint(c1, c2) for c2 in x):
return False
return True
def is_same_constraint(c1: Constraint, c2: Constraint) -> bool:
# Ignore direction when comparing constraints against Any.
skip_op_check = isinstance(get_proper_type(c1.target), AnyType) and isinstance(
get_proper_type(c2.target), AnyType
)
return (
c1.type_var == c2.type_var
and (c1.op == c2.op or skip_op_check)
and mypy.subtypes.is_same_type(c1.target, c2.target)
)
def is_similar_constraints(x: list[Constraint], y: list[Constraint]) -> bool:
"""Check that two lists of constraints have similar structure.
This means that each list has same type variable plus direction pairs (i.e we
ignore the target). Except for constraints where target is Any type, there
we ignore direction as well.
"""
return _is_similar_constraints(x, y) and _is_similar_constraints(y, x)
def _is_similar_constraints(x: list[Constraint], y: list[Constraint]) -> bool:
"""Check that every constraint in the first list has a similar one in the second.
See docstring above for definition of similarity.
"""
for c1 in x:
has_similar = False
for c2 in y:
# Ignore direction when either constraint is against Any.
skip_op_check = isinstance(get_proper_type(c1.target), AnyType) or isinstance(
get_proper_type(c2.target), AnyType
)
if c1.type_var == c2.type_var and (c1.op == c2.op or skip_op_check):
has_similar = True
break
if not has_similar:
return False
return True
def simplify_away_incomplete_types(types: Iterable[Type]) -> list[Type]:
complete = [typ for typ in types if is_complete_type(typ)]
if complete:
return complete
else:
return list(types)
def is_complete_type(typ: Type) -> bool:
"""Is a type complete?
A complete doesn't have uninhabited type components or (when not in strict
optional mode) None components.
"""
return typ.accept(CompleteTypeVisitor())
class CompleteTypeVisitor(TypeQuery[bool]):
def __init__(self) -> None:
super().__init__(all)
def visit_uninhabited_type(self, t: UninhabitedType) -> bool:
return False
class ConstraintBuilderVisitor(TypeVisitor[List[Constraint]]):
"""Visitor class for inferring type constraints."""
# The type that is compared against a template
# TODO: The value may be None. Is that actually correct?
actual: ProperType
def __init__(self, actual: ProperType, direction: int, skip_neg_op: bool) -> None:
# Direction must be SUBTYPE_OF or SUPERTYPE_OF.
self.actual = actual
self.direction = direction
# Whether to skip polymorphic inference (involves inference in opposite direction)
# this is used to prevent infinite recursion when both template and actual are
# generic callables.
self.skip_neg_op = skip_neg_op
# Trivial leaf types
def visit_unbound_type(self, template: UnboundType) -> list[Constraint]:
return []
def visit_any(self, template: AnyType) -> list[Constraint]:
return []
def visit_none_type(self, template: NoneType) -> list[Constraint]:
return []
def visit_uninhabited_type(self, template: UninhabitedType) -> list[Constraint]:
return []
def visit_erased_type(self, template: ErasedType) -> list[Constraint]:
return []
def visit_deleted_type(self, template: DeletedType) -> list[Constraint]:
return []
def visit_literal_type(self, template: LiteralType) -> list[Constraint]:
return []
# Errors
def visit_partial_type(self, template: PartialType) -> list[Constraint]:
# We can't do anything useful with a partial type here.
assert False, "Internal error"
# Non-trivial leaf type
def visit_type_var(self, template: TypeVarType) -> list[Constraint]:
assert False, (
"Unexpected TypeVarType in ConstraintBuilderVisitor"
" (should have been handled in infer_constraints)"
)
def visit_param_spec(self, template: ParamSpecType) -> list[Constraint]:
# Can't infer ParamSpecs from component values (only via Callable[P, T]).
return []
def visit_type_var_tuple(self, template: TypeVarTupleType) -> list[Constraint]:
raise NotImplementedError
def visit_unpack_type(self, template: UnpackType) -> list[Constraint]:
raise RuntimeError("Mypy bug: unpack should be handled at a higher level.")
def visit_parameters(self, template: Parameters) -> list[Constraint]:
# Constraining Any against C[P] turns into infer_against_any([P], Any)
# ... which seems like the only case this can happen. Better to fail loudly otherwise.
if isinstance(self.actual, AnyType):
return self.infer_against_any(template.arg_types, self.actual)
if type_state.infer_polymorphic and isinstance(self.actual, Parameters):
# For polymorphic inference we need to be able to infer secondary constraints
# in situations like [x: T] <: P <: [x: int].
return infer_callable_arguments_constraints(template, self.actual, self.direction)
raise RuntimeError("Parameters cannot be constrained to")
# Non-leaf types
def visit_instance(self, template: Instance) -> list[Constraint]:
original_actual = actual = self.actual
res: list[Constraint] = []
if isinstance(actual, (CallableType, Overloaded)) and template.type.is_protocol:
if "__call__" in template.type.protocol_members:
# Special case: a generic callback protocol
if not any(template == t for t in template.type.inferring):
template.type.inferring.append(template)
call = mypy.subtypes.find_member(
"__call__", template, actual, is_operator=True
)
assert call is not None
if mypy.subtypes.is_subtype(actual, erase_typevars(call)):
subres = infer_constraints(call, actual, self.direction)
res.extend(subres)
template.type.inferring.pop()
if isinstance(actual, CallableType) and actual.fallback is not None:
if actual.is_type_obj() and template.type.is_protocol:
ret_type = get_proper_type(actual.ret_type)
if isinstance(ret_type, TupleType):
ret_type = mypy.typeops.tuple_fallback(ret_type)
if isinstance(ret_type, Instance):
if self.direction == SUBTYPE_OF:
subtype = template
else:
subtype = ret_type
res.extend(
self.infer_constraints_from_protocol_members(
ret_type, template, subtype, template, class_obj=True
)
)
actual = actual.fallback
if isinstance(actual, TypeType) and template.type.is_protocol:
if isinstance(actual.item, Instance):
if self.direction == SUBTYPE_OF:
subtype = template
else:
subtype = actual.item
res.extend(
self.infer_constraints_from_protocol_members(
actual.item, template, subtype, template, class_obj=True
)
)
if self.direction == SUPERTYPE_OF:
# Infer constraints for Type[T] via metaclass of T when it makes sense.
a_item = actual.item
if isinstance(a_item, TypeVarType):
a_item = get_proper_type(a_item.upper_bound)
if isinstance(a_item, Instance) and a_item.type.metaclass_type:
res.extend(
self.infer_constraints_from_protocol_members(
a_item.type.metaclass_type, template, actual, template
)
)
if isinstance(actual, Overloaded) and actual.fallback is not None:
actual = actual.fallback
if isinstance(actual, TypedDictType):
actual = actual.as_anonymous().fallback
if isinstance(actual, LiteralType):
actual = actual.fallback
if isinstance(actual, Instance):
instance = actual
erased = erase_typevars(template)
assert isinstance(erased, Instance) # type: ignore[misc]
# We always try nominal inference if possible,
# it is much faster than the structural one.
if self.direction == SUBTYPE_OF and template.type.has_base(instance.type.fullname):
mapped = map_instance_to_supertype(template, instance.type)
tvars = mapped.type.defn.type_vars
if instance.type.has_type_var_tuple_type:
# Variadic types need special handling to map each type argument to
# the correct corresponding type variable.
assert instance.type.type_var_tuple_prefix is not None
assert instance.type.type_var_tuple_suffix is not None
prefix_len = instance.type.type_var_tuple_prefix
suffix_len = instance.type.type_var_tuple_suffix
tvt = instance.type.defn.type_vars[prefix_len]
assert isinstance(tvt, TypeVarTupleType)
fallback = tvt.tuple_fallback
i_prefix, i_middle, i_suffix = split_with_prefix_and_suffix(
instance.args, prefix_len, suffix_len
)
m_prefix, m_middle, m_suffix = split_with_prefix_and_suffix(
mapped.args, prefix_len, suffix_len
)
instance_args = i_prefix + (TupleType(list(i_middle), fallback),) + i_suffix
mapped_args = m_prefix + (TupleType(list(m_middle), fallback),) + m_suffix
else:
mapped_args = mapped.args
instance_args = instance.args
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
for tvar, mapped_arg, instance_arg in zip(tvars, mapped_args, instance_args):
if isinstance(tvar, TypeVarType):
# The constraints for generic type parameters depend on variance.
# Include constraints from both directions if invariant.
if tvar.variance != CONTRAVARIANT:
res.extend(infer_constraints(mapped_arg, instance_arg, self.direction))
if tvar.variance != COVARIANT:
res.extend(
infer_constraints(mapped_arg, instance_arg, neg_op(self.direction))
)
elif isinstance(tvar, ParamSpecType) and isinstance(mapped_arg, ParamSpecType):
prefix = mapped_arg.prefix
if isinstance(instance_arg, Parameters):
# No such thing as variance for ParamSpecs, consider them invariant
# TODO: constraints between prefixes using
# infer_callable_arguments_constraints()
suffix: Type = instance_arg.copy_modified(
instance_arg.arg_types[len(prefix.arg_types) :],
instance_arg.arg_kinds[len(prefix.arg_kinds) :],
instance_arg.arg_names[len(prefix.arg_names) :],
)
res.append(Constraint(mapped_arg, SUBTYPE_OF, suffix))
res.append(Constraint(mapped_arg, SUPERTYPE_OF, suffix))
elif isinstance(instance_arg, ParamSpecType):
suffix = instance_arg.copy_modified(
prefix=Parameters(
instance_arg.prefix.arg_types[len(prefix.arg_types) :],
instance_arg.prefix.arg_kinds[len(prefix.arg_kinds) :],
instance_arg.prefix.arg_names[len(prefix.arg_names) :],
)
)
res.append(Constraint(mapped_arg, SUBTYPE_OF, suffix))
res.append(Constraint(mapped_arg, SUPERTYPE_OF, suffix))
elif isinstance(tvar, TypeVarTupleType):
# Handle variadic type variables covariantly for consistency.
res.extend(infer_constraints(mapped_arg, instance_arg, self.direction))
return res
elif self.direction == SUPERTYPE_OF and instance.type.has_base(template.type.fullname):
mapped = map_instance_to_supertype(instance, template.type)
tvars = template.type.defn.type_vars
if template.type.has_type_var_tuple_type:
# Variadic types need special handling to map each type argument to
# the correct corresponding type variable.
assert template.type.type_var_tuple_prefix is not None
assert template.type.type_var_tuple_suffix is not None
prefix_len = template.type.type_var_tuple_prefix
suffix_len = template.type.type_var_tuple_suffix
tvt = template.type.defn.type_vars[prefix_len]
assert isinstance(tvt, TypeVarTupleType)
fallback = tvt.tuple_fallback
t_prefix, t_middle, t_suffix = split_with_prefix_and_suffix(
template.args, prefix_len, suffix_len
)
m_prefix, m_middle, m_suffix = split_with_prefix_and_suffix(
mapped.args, prefix_len, suffix_len
)
template_args = t_prefix + (TupleType(list(t_middle), fallback),) + t_suffix
mapped_args = m_prefix + (TupleType(list(m_middle), fallback),) + m_suffix
else:
mapped_args = mapped.args
template_args = template.args
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
for tvar, mapped_arg, template_arg in zip(tvars, mapped_args, template_args):
if isinstance(tvar, TypeVarType):
# The constraints for generic type parameters depend on variance.
# Include constraints from both directions if invariant.
if tvar.variance != CONTRAVARIANT:
res.extend(infer_constraints(template_arg, mapped_arg, self.direction))
if tvar.variance != COVARIANT:
res.extend(
infer_constraints(template_arg, mapped_arg, neg_op(self.direction))
)
elif isinstance(tvar, ParamSpecType) and isinstance(
template_arg, ParamSpecType
):
prefix = template_arg.prefix
if isinstance(mapped_arg, Parameters):
# No such thing as variance for ParamSpecs, consider them invariant
# TODO: constraints between prefixes using
# infer_callable_arguments_constraints()
suffix = mapped_arg.copy_modified(
mapped_arg.arg_types[len(prefix.arg_types) :],
mapped_arg.arg_kinds[len(prefix.arg_kinds) :],
mapped_arg.arg_names[len(prefix.arg_names) :],
)
res.append(Constraint(template_arg, SUBTYPE_OF, suffix))
res.append(Constraint(template_arg, SUPERTYPE_OF, suffix))
elif isinstance(mapped_arg, ParamSpecType):
suffix = mapped_arg.copy_modified(
prefix=Parameters(
mapped_arg.prefix.arg_types[len(prefix.arg_types) :],
mapped_arg.prefix.arg_kinds[len(prefix.arg_kinds) :],
mapped_arg.prefix.arg_names[len(prefix.arg_names) :],
)
)
res.append(Constraint(template_arg, SUBTYPE_OF, suffix))
res.append(Constraint(template_arg, SUPERTYPE_OF, suffix))
elif isinstance(tvar, TypeVarTupleType):
# Consider variadic type variables to be invariant.
res.extend(infer_constraints(template_arg, mapped_arg, SUBTYPE_OF))
res.extend(infer_constraints(template_arg, mapped_arg, SUPERTYPE_OF))
return res
if (
template.type.is_protocol
and self.direction == SUPERTYPE_OF
and
# We avoid infinite recursion for structural subtypes by checking
# whether this type already appeared in the inference chain.
# This is a conservative way to break the inference cycles.
# It never produces any "false" constraints but gives up soon
# on purely structural inference cycles, see #3829.
# Note that we use is_protocol_implementation instead of is_subtype
# because some type may be considered a subtype of a protocol
# due to _promote, but still not implement the protocol.
not any(template == t for t in reversed(template.type.inferring))
and mypy.subtypes.is_protocol_implementation(instance, erased, skip=["__call__"])
):
template.type.inferring.append(template)
res.extend(
self.infer_constraints_from_protocol_members(
instance, template, original_actual, template
)
)
template.type.inferring.pop()
return res
elif (
instance.type.is_protocol
and self.direction == SUBTYPE_OF
and
# We avoid infinite recursion for structural subtypes also here.
not any(instance == i for i in reversed(instance.type.inferring))
and mypy.subtypes.is_protocol_implementation(erased, instance, skip=["__call__"])
):
instance.type.inferring.append(instance)
res.extend(
self.infer_constraints_from_protocol_members(
instance, template, template, instance
)
)
instance.type.inferring.pop()
return res
if res:
return res
if isinstance(actual, AnyType):
return self.infer_against_any(template.args, actual)
if (
isinstance(actual, TupleType)
and is_named_instance(template, TUPLE_LIKE_INSTANCE_NAMES)
and self.direction == SUPERTYPE_OF
):
for item in actual.items:
if isinstance(item, UnpackType):
unpacked = get_proper_type(item.type)
if isinstance(unpacked, TypeVarTupleType):
# Cannot infer anything for T from [T, ...] <: *Ts
continue
assert (
isinstance(unpacked, Instance)
and unpacked.type.fullname == "builtins.tuple"
)
item = unpacked.args[0]
cb = infer_constraints(template.args[0], item, SUPERTYPE_OF)
res.extend(cb)
return res
elif isinstance(actual, TupleType) and self.direction == SUPERTYPE_OF:
return infer_constraints(template, mypy.typeops.tuple_fallback(actual), self.direction)
elif isinstance(actual, TypeVarType):
if not actual.values and not actual.id.is_meta_var():
return infer_constraints(template, actual.upper_bound, self.direction)
return []
elif isinstance(actual, ParamSpecType):
return infer_constraints(template, actual.upper_bound, self.direction)
elif isinstance(actual, TypeVarTupleType):
raise NotImplementedError
else:
return []
def infer_constraints_from_protocol_members(
self,
instance: Instance,
template: Instance,
subtype: Type,
protocol: Instance,
class_obj: bool = False,
) -> list[Constraint]:
"""Infer constraints for situations where either 'template' or 'instance' is a protocol.
The 'protocol' is the one of two that is an instance of protocol type, 'subtype'
is the type used to bind self during inference. Currently, we just infer constrains for
every protocol member type (both ways for settable members).
"""
res = []
for member in protocol.type.protocol_members:
inst = mypy.subtypes.find_member(member, instance, subtype, class_obj=class_obj)
temp = mypy.subtypes.find_member(member, template, subtype)
if inst is None or temp is None:
if member == "__call__":
continue
return [] # See #11020
# The above is safe since at this point we know that 'instance' is a subtype
# of (erased) 'template', therefore it defines all protocol members