forked from ArashPartow/exprtk
-
Notifications
You must be signed in to change notification settings - Fork 0
C++ Mathematical Expression Parsing And Evaluation Library
kuipertan/exprtk
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
 |  | |||
Repository files navigation
C++ Mathematical Expression Toolkit Library [00 - INTRODUCTION] The C++ Mathematical Expression Toolkit Library (ExprTk) is a simple to use, easy to integrate and extremely efficient run-time mathematical expression parsing and evaluation engine. The parsing engine supports numerous forms of functional and logic processing semantics and is easily extendible. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [01 - CAPABILITIES] The ExprTk expression evaluator supports the following fundamental arithmetic operations, functions and processes: (00) Types: Scalar, Vector, String (01) Basic operators: +, -, *, /, %, ^ (02) Assignment: :=, +=, -=, *=, /=, %= (03) Equalities & Inequalities: =, ==, <>, !=, <, <=, >, >= (04) Boolean logic: and, mand, mor, nand, nor, not, or, shl, shr, xnor, xor, true, false (05) Functions: abs, avg, ceil, clamp, equal, erf, erfc, exp, expm1, floor, frac, log, log10, log1p, log2, logn, max, min, mul, ncdf, nequal, root, round, roundn, sgn, sqrt, sum, swap, trunc (06) Trigonometry: acos, acosh, asin, asinh, atan, atanh, atan2, cos, cosh, cot, csc, sec, sin, sinc, sinh, tan, tanh, hypot, rad2deg, deg2grad, deg2rad, grad2deg (07) Control structures: if-then-else, ternary conditional, switch-case, return-statement (08) Loop statements: while, for, repeat-until, break, continue (09) String processing: in, like, ilike, concatenation (10) Optimisations: constant-folding, simple strength reduction and dead code elimination (11) Calculus: numerical integration and differentiation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [02 - EXAMPLE EXPRESSIONS] The following is a short listing of the types of mathematical expressions that can be parsed and evaluated using the ExprTk library. (01) sqrt(1 - (3 / x^2)) (02) clamp(-1, sin(2 * pi * x) + cos(y / 2 * pi), +1) (03) sin(2.34e-3 * x) (04) if(((x[2] + 2) == 3) and ((y + 5) <= 9),1 + w, 2 / z) (05) inrange(-2,m,+2) == if(({-2 <= m} and [m <= +2]),1,0) (06) ({1/1}*[1/2]+(1/3))-{1/4}^[1/5]+(1/6)-({1/7}+[1/8]*(1/9)) (07) a * exp(2.2 / 3.3 * t) + c (08) z := x + sin(2.567 * pi / y) (09) u := 2.123 * {pi * z} / (w := x + cos(y / pi)) (10) 2x + 3y + 4z + 5w == 2 * x + 3 * y + 4 * z + 5 * w (11) 3(x + y) / 2.9 + 1.234e+12 == 3 * (x + y) / 2.9 + 1.234e+12 (12) (x + y)3.3 + 1 / 4.5 == [x + y] * 3.3 + 1 / 4.5 (13) (x + y[i])z + 1.1 / 2.7 == (x + y[i]) * z + 1.1 / 2.7 (14) (sin(x / pi) cos(2y) + 1) == (sin(x / pi) * cos(2 * y) + 1) (15) 75x^17 + 25.1x^5 - 35x^4 - 15.2x^3 + 40x^2 - 15.3x + 1 (16) (avg(x,y) <= x + y ? x - y : x * y) + 2.345 * pi / x (17) while (x <= 100) { x -= 1; } (18) x <= 'abc123' and (y in 'AString') or ('1x2y3z' != z) (19) ((x + 'abc') like '*123*') or ('a123b' ilike y) (20) sgn(+1.2^3.4z / -5.6y) <= {-7.8^9 / -10.11x } ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [03 - COPYRIGHT NOTICE] Free use of the C++ Mathematical Expression Toolkit Library is permitted under the guidelines and in accordance with the most current version of the Common Public License. http://www.opensource.org/licenses/cpl1.0.php ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [04 - DOWNLOADS & UPDATES] The most recent version of the C++ Mathematical Expression Toolkit Library including all updates and tests can be found at the following locations: (a) Download: http://www.partow.net/programming/exprtk/index.html (b) Repository: https://github.com/ArashPartow/exprtk https://github.com/ArashPartow/exprtk-extras ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [05 - INSTALLATION] The header file exprtk.hpp should be placed in a project or system include path (e.g: /usr/include/). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [06 - COMPILATION] (a) For a complete build: make clean all (b) For a PGO build: make clean pgo (c) To strip executables: make strip_bin (d) Execute valgrind check: make valgrind_check ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [07 - COMPILER COMPATIBILITY] ExprTk has been built error and warning free using the following set of C++ compilers: (*) GNU Compiler Collection (3.3+) (*) Intel C++ Compiler (8.x+) (*) Clang/LLVM (1.1+) (*) PGI C++ (10.x+) (*) Microsoft Visual Studio C++ Compiler (8.1+) (*) IBM XL C/C++ (9.x+) (*) C++ Builder (XE4+) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [08 - BUILT-IN OPERATIONS & FUNCTIONS] (0) Arithmetic & Assignment Operators +----------+---------------------------------------------------------+ | OPERATOR | DEFINITION | +----------+---------------------------------------------------------+ | + | Addition between x and y. (eg: x + y) | +----------+---------------------------------------------------------+ | - | Subtraction between x and y. (eg: x - y) | +----------+---------------------------------------------------------+ | * | Multiplication between x and y. (eg: x * y) | +----------+---------------------------------------------------------+ | / | Division between x and y. (eg: x / y) | +----------+---------------------------------------------------------+ | % | Modulus of x with respect to y. (eg: x % y) | +----------+---------------------------------------------------------+ | ^ | x to the power of y. (eg: x ^ y) | +----------+---------------------------------------------------------+ | := | Assign the value of x to y. Where y is either a variable| | | or vector type. (eg: y := x) | +----------+---------------------------------------------------------+ | += | Increment x by the value of the expression on the right | | | hand side. Where x is either a variable or vector type. | | | (eg: x += abs(y - z)) | +----------+---------------------------------------------------------+ | -= | Decrement x by the value of the expression on the right | | | hand side. Where x is either a variable or vector type. | | | (eg: x[i] -= abs(y + z)) | +----------+---------------------------------------------------------+ | *= | Assign the multiplication of x by the value of the | | | expression on the righthand side to x. Where x is either| | | a variable or vector type. | | | (eg: x *= abs(y / z)) | +----------+---------------------------------------------------------+ | /= | Assign the division of x by the value of the expression | | | on the right-hand side to x. Where x is either a | | | variable or vector type. (eg: x[i + j] /= abs(y * z)) | +----------+---------------------------------------------------------+ | %= | Assign x modulo the value of the expression on the right| | | hand side to x. Where x is either a variable or vector | | | type. (eg: x[2] %= y ^ 2) | +----------+---------------------------------------------------------+ (1) Equalities & Inequalities +----------+---------------------------------------------------------+ | OPERATOR | DEFINITION | +----------+---------------------------------------------------------+ | == or = | True only if x is strictly equal to y. (eg: x == y) | +----------+---------------------------------------------------------+ | <> or != | True only if x does not equal y. (eg: x <> y or x != y) | +----------+---------------------------------------------------------+ | < | True only if x is less than y. (eg: x < y) | +----------+---------------------------------------------------------+ | <= | True only if x is less than or equal to y. (eg: x <= y) | +----------+---------------------------------------------------------+ | > | True only if x is greater than y. (eg: x > y) | +----------+---------------------------------------------------------+ | >= | True only if x greater than or equal to y. (eg: x >= y) | +----------+---------------------------------------------------------+ (2) Boolean Operations +----------+---------------------------------------------------------+ | OPERATOR | DEFINITION | +----------+---------------------------------------------------------+ | true | True state or any value other than zero (typically 1). | +----------+---------------------------------------------------------+ | false | False state, value of zero. | +----------+---------------------------------------------------------+ | and | Logical AND, True only if x and y are both true. | | | (eg: x and y) | +----------+---------------------------------------------------------+ | mand | Multi-input logical AND, True only if all inputs are | | | true. Left to right short-circuiting of expressions. | | | (eg: mand(x > y, z < w, u or v, w and x)) | +----------+---------------------------------------------------------+ | mor | Multi-input logical OR, True if at least one of the | | | inputs are true. Left to right short-circuiting of | | | expressions. (eg: mor(x > y, z < w, u or v, w and x)) | +----------+---------------------------------------------------------+ | nand | Logical NAND, True only if either x or y is false. | | | (eg: x nand y) | +----------+---------------------------------------------------------+ | nor | Logical NOR, True only if the result of x or y is false | | | (eg: x nor y) | +----------+---------------------------------------------------------+ | not | Logical NOT, Negate the logical sense of the input. | | | (eg: not(x and y) == x nand y) | +----------+---------------------------------------------------------+ | or | Logical OR, True if either x or y is true. (eg: x or y) | +----------+---------------------------------------------------------+ | xor | Logical XOR, True only if the logical states of x and y | | | differ. (eg: x xor y) | +----------+---------------------------------------------------------+ | xnor | Logical XNOR, True iff the biconditional of x and y is | | | satisfied. (eg: x xnor y) | +----------+---------------------------------------------------------+ | & | Similar to AND but with left to right expression short | | | circuiting optimisation. (eg: (x & y) == (y and x)) | +----------+---------------------------------------------------------+ | | | Similar to OR but with left to right expression short | | | circuiting optimisation. (eg: (x | y) == (y or x)) | +----------+---------------------------------------------------------+ (3) General Purpose Functions +----------+---------------------------------------------------------+ | FUNCTION | DEFINITION | +----------+---------------------------------------------------------+ | abs | Absolute value of x. (eg: abs(x)) | +----------+---------------------------------------------------------+ | avg | Average of all the inputs. | | | (eg: avg(x,y,z,w,u,v) == (x + y + z + w + u + v) / 6) | +----------+---------------------------------------------------------+ | ceil | Smallest integer that is greater than or equal to x. | +----------+---------------------------------------------------------+ | clamp | Clamp x in range between r0 and r1, where r0 < r1. | | | (eg: clamp(r0,x,r1)) | +----------+---------------------------------------------------------+ | equal | Equality test between x and y using normalized epsilon | +----------+---------------------------------------------------------+ | erf | Error function of x. (eg: erf(x)) | +----------+---------------------------------------------------------+ | erfc | Complimentary error function of x. (eg: erfc(x)) | +----------+---------------------------------------------------------+ | exp | e to the power of x. (eg: exp(x)) | +----------+---------------------------------------------------------+ | expm1 | e to the power of x minus 1, where x is very small. | | | (eg: expm1(x)) | +----------+---------------------------------------------------------+ | floor | Largest integer that is less than or equal to x. | | | (eg: floor(x)) | +----------+---------------------------------------------------------+ | frac | Fractional portion of x. (eg: frac(x)) | +----------+---------------------------------------------------------+ | hypot | Hypotenuse of x and y (eg: hypot(x,y) = sqrt(x*x + y*y))| +----------+---------------------------------------------------------+ | iclamp | Inverse-clamp x outside of the range r0 and r1. Where | | | r0 < r1. If x is within the range it will snap to the | | | closest bound. (eg: iclamp(r0,x,r1) | +----------+---------------------------------------------------------+ | inrange | In-range returns 'true' when x is within the range r0 | | | and r1. Where r0 < r1. (eg: inrange(r0,x,r1) | +----------+---------------------------------------------------------+ | log | Natural logarithm of x. (eg: log(x)) | +----------+---------------------------------------------------------+ | log10 | Base 10 logarithm of x. (eg: log10(x)) | +----------+---------------------------------------------------------+ | log1p | Natural logarithm of 1 + x, where x is very small. | | | (eg: log1p(x)) | +----------+---------------------------------------------------------+ | log2 | Base 2 logarithm of x. (eg: log2(x)) | +----------+---------------------------------------------------------+ | logn | Base N logarithm of x. where n is a positive integer. | | | (eg: logn(x,8)) | +----------+---------------------------------------------------------+ | max | Largest value of all the inputs. (eg: max(x,y,z,w,u,v)) | +----------+---------------------------------------------------------+ | min | Smallest value of all the inputs. (eg: min(x,y,z,w,u)) | +----------+---------------------------------------------------------+ | mul | Product of all the inputs. | | | (eg: mul(x,y,z,w,u,v,t) == (x * y * z * w * u * v * t)) | +----------+---------------------------------------------------------+ | ncdf | Normal cumulative distribution function. (eg: ncdf(x)) | +----------+---------------------------------------------------------+ | nequal | Not-equal test between x and y using normalized epsilon | +----------+---------------------------------------------------------+ | root | Nth-Root of x. where n is a positive integer. | | | (eg: root(x,3) == x^(1/3)) | +----------+---------------------------------------------------------+ | round | Round x to the nearest integer. (eg: round(x)) | +----------+---------------------------------------------------------+ | roundn | Round x to n decimal places (eg: roundn(x,3)) | | | where n > 0 and is an integer. | | | (eg: roundn(1.2345678,4) == 1.2346) | +----------+---------------------------------------------------------+ | sgn | Sign of x, -1 where x < 0, +1 where x > 0, else zero. | | | (eg: sgn(x)) | +----------+---------------------------------------------------------+ | sqrt | Square root of x, where x >= 0. (eg: sqrt(x)) | +----------+---------------------------------------------------------+ | sum | Sum of all the inputs. | | | (eg: sum(x,y,z,w,u,v,t) == (x + y + z + w + u + v + t)) | +----------+---------------------------------------------------------+ | swap | Swap the values of the variables x and y and return the | | <=> | current value of y. (eg: swap(x,y) or x <=> y) | +----------+---------------------------------------------------------+ | trunc | Integer portion of x. (eg: trunc(x)) | +----------+---------------------------------------------------------+ (4) Trigonometry Functions +----------+---------------------------------------------------------+ | FUNCTION | DEFINITION | +----------+---------------------------------------------------------+ | acos | Arc cosine of x expressed in radians. Interval [-1,+1] | | | (eg: acos(x)) | +----------+---------------------------------------------------------+ | acosh | Inverse hyperbolic cosine of x expressed in radians. | | | (eg: acosh(x)) | +----------+---------------------------------------------------------+ | asin | Arc sine of x expressed in radians. Interval [-1,+1] | | | (eg: asin(x)) | +----------+---------------------------------------------------------+ | asinh | Inverse hyperbolic sine of x expressed in radians. | | | (eg: asinh(x)) | +----------+---------------------------------------------------------+ | atan | Arc tangent of x expressed in radians. Interval [-1,+1] | | | (eg: atan(x)) | +----------+---------------------------------------------------------+ | atan2 | Arc tangent of (x / y) expressed in radians. [-pi,+pi] | | | eg: atan2(x,y) | +----------+---------------------------------------------------------+ | atanh | Inverse hyperbolic tangent of x expressed in radians. | | | (eg: atanh(x)) | +----------+---------------------------------------------------------+ | cos | Cosine of x. (eg: cos(x)) | +----------+---------------------------------------------------------+ | cosh | Hyperbolic cosine of x. (eg: cosh(x)) | +----------+---------------------------------------------------------+ | cot | Cotangent of x. (eg: cot(x)) | +----------+---------------------------------------------------------+ | csc | Cosecant of x. (eg: csc(x)) | +----------+---------------------------------------------------------+ | sec | Secant of x. (eg: sec(x)) | +----------+---------------------------------------------------------+ | sin | Sine of x. (eg: sin(x)) | +----------+---------------------------------------------------------+ | sinc | Sine cardinal of x. (eg: sinc(x)) | +----------+---------------------------------------------------------+ | sinh | Hyperbolic sine of x. (eg: sinh(x)) | +----------+---------------------------------------------------------+ | tan | Tangent of x. (eg: tan(x)) | +----------+---------------------------------------------------------+ | tanh | Hyperbolic tangent of x. (eg: tanh(x)) | +----------+---------------------------------------------------------+ | deg2rad | Convert x from degrees to radians. (eg: deg2rad(x)) | +----------+---------------------------------------------------------+ | deg2grad | Convert x from degrees to gradians. (eg: deg2grad(x)) | +----------+---------------------------------------------------------+ | rad2deg | Convert x from radians to degrees. (eg: rad2deg(x)) | +----------+---------------------------------------------------------+ | grad2deg | Convert x from gradians to degrees. (eg: grad2deg(x)) | +----------+---------------------------------------------------------+ (5) String Processing +----------+---------------------------------------------------------+ | FUNCTION | DEFINITION | +----------+---------------------------------------------------------+ | = , == | All common equality/inequality operators are applicable | | !=, <> | to strings and are applied in a case sensitive manner. | | <=, >= | In the following example x, y and z are of type string. | | < , > | (eg: not((x <= 'AbC') and ('1x2y3z' <> y)) or (z == x) | +----------+---------------------------------------------------------+ | in | True only if x is a substring of y. | | | (eg: x in y or 'abc' in 'abcdefgh') | +----------+---------------------------------------------------------+ | like | True only if the string x matches the pattern y. | | | Available wildcard characters are '*' and '?' denoting | | | zero or more and zero or one matches respectively. | | | (eg: x like y or 'abcdefgh' like 'a?d*h') | +----------+---------------------------------------------------------+ | ilike | True only if the string x matches the pattern y in a | | | case insensitive manner. Available wildcard characters | | | are '*' and '?' denoting zero or more and zero or one | | | matches respectively. | | | (eg: x ilike y or 'a1B2c3D4e5F6g7H' ilike 'a?d*h') | +----------+---------------------------------------------------------+ | [r0:r1] | The closed interval [r0,r1] of the specified string. | | | eg: Given a string x with a value of 'abcdefgh' then: | | | 1. x[1:4] == 'bcde' | | | 2. x[ :5] == x[:5] == 'abcdef' | | | 3. x[3: ] == x[3:] =='cdefgh' | | | 4. x[ : ] == x[:] == 'abcdefgh' | | | 5. x[4/2:3+2] == x[2:5] == 'cdef' | | | | | | Note: Both r0 and r1 are assumed to be integers, where | | | r0 <= r1. They may also be the result of an expression, | | | in the event they have fractional components truncation | | | will be performed. (eg: 1.67 --> 1) | +----------+---------------------------------------------------------+ | := | Assign the value of x to y. Where y is a mutable string | | | or string range and x is either a string or a string | | | range. eg: | | | 1. y := x | | | 2. y := 'abc' | | | 3. y := x[:i + j] | | | 4. y := '0123456789'[2:7] | | | 5. y := '0123456789'[2i + 1:7] | | | 6. y := (x := '0123456789'[2:7]) | | | 7. y[i:j] := x | | | 8. y[i:j] := (x + 'abcdefg'[8 / 4:5])[m:n] | | | | | | Note: For options 7 and 8 the shorter of the two ranges | | | will denote the number characters that are to be copied.| +----------+---------------------------------------------------------+ | + | Concatenation of x and y. Where x and y are strings or | | | string ranges. eg | | | 1. x + y | | | 2. x + 'abc' | | | 3. x + y[:i + j] | | | 4. x[i:j] + y[2:3] + '0123456789'[2:7] | | | 5. 'abc' + x + y | | | 6. 'abc' + '1234567' | | | 7. (x + 'a1B2c3D4' + y)[i:2j] | +----------+---------------------------------------------------------+ | += | Append to x the value of y. Where x is a mutable string | | | and y is either a string or a string range. eg: | | | 1. x += y | | | 2. x += 'abc' | | | 3. x += y[:i + j] + 'abc' | | | 4. x += '0123456789'[2:7] | +----------+---------------------------------------------------------+ | <=> | Swap the values of x and y. Where x and y are mutable | | | strings. (eg: x <=> y) | +----------+---------------------------------------------------------+ | [] | The string size operator returns the size of the string | | | being actioned. | | | eg: | | | 1. 'abc'[] == 3 | | | 2. var max_str_length := max(s0[],s1[],s2[],s3[]) | | | 3. ('abc' + 'xyz')[] == 6 | | | 4. (('abc' + 'xyz')[1:4])[] == 4 | +----------+---------------------------------------------------------+ (6) Control Structures +----------+---------------------------------------------------------+ |STRUCTURE | DEFINITION | +----------+---------------------------------------------------------+ | if | If x is true then return y else return z. | | | eg: | | | 1. if(x, y, z) | | | 2. if((x + 1) > 2y, z + 1, w / v) | | | 3. if(x > y) z; | | | 4. if(x <= 2*y) { z + w }; | +----------+---------------------------------------------------------+ | if-else | The if-else/else-if statement. Subject to the condition | | | branch the statement will return either the value of the| | | consequent or the alternative branch. | | | eg: | | | 1. if (x > y) z; else w; | | | 2. if (x > y) z; else if (w != u) v; | | | 3. if (x < y) {z; w + 1;} else u; | | | 4. if ((x != y) and (z > w)) | | | { | | | y := sin(x) / u; | | | z := w + 1; | | | } | | | else if (x > (z + 1)) | | | { | | | w := abs (x - y) + z; | | | u := (x + 1) > 2y ? 2u : 3u; | | | } | +----------+---------------------------------------------------------+ | switch | The first true case condition that is encountered will | | | determine the result of the switch. If none of the case | | | conditions hold true, the default action is assumed as | | | the final return value. This is sometimes also known as | | | a multi-way branch mechanism. | | | eg: | | | switch | | | { | | | case x > (y + z) : 2 * x / abs(y - z); | | | case x < 3 : sin(x + y); | | | default : 1 + x; | | | } | +----------+---------------------------------------------------------+ | while | The structure will repeatedly evaluate the internal | | | statement(s) 'while' the condition is true. The final | | | statement in the final iteration will be used as the | | | return value of the loop. | | | eg: | | | while ((x -= 1) > 0) | | | { | | | y := x + z; | | | w := u + y; | | | } | +----------+---------------------------------------------------------+ | repeat/ | The structure will repeatedly evaluate the internal | | until | statement(s) 'until' the condition is true. The final | | | statement in the final iteration will be used as the | | | return value of the loop. | | | eg: | | | repeat | | | y := x + z; | | | w := u + y; | | | until ((x += 1) > 100) | +----------+---------------------------------------------------------+ | for | The structure will repeatedly evaluate the internal | | | statement(s) while the condition is true. On each loop | | | iteration, an 'incrementing' expression is evaluated. | | | The conditional is mandatory whereas the initialiser | | | and incrementing expressions are optional. | | | eg: | | | for (var x := 0; (x < n) and (x != y); x += 1) | | | { | | | y := y + x / 2 - z; | | | w := u + y; | | | } | +----------+---------------------------------------------------------+ | break | Break terminates the execution of the nearest enclosed | | break[] | loop, allowing for the execution to continue on external| | | to the loop. The default break statement will set the | | | return value of the loop to NaN, where as the return | | | based form will set the value to that of the break | | | expression. | | | eg: | | | while ((i += 1) < 10) | | | { | | | if (i < 5) | | | j -= i + 2; | | | else if (i % 2 == 0) | | | break; | | | else | | | break[2i + 3]; | | | } | +----------+---------------------------------------------------------+ | continue | Continue results in the remaining portion of the nearest| | | enclosing loop body to be skipped. | | | eg: | | | for (var i := 0; i < 10; i += 1) | | | { | | | if (i < 5) | | | continue; | | | j -= i + 2; | | | } | +----------+---------------------------------------------------------+ | return | Return immediately from within the current expression. | | | With the option of passing back a variable number of | | | values (scalar, vector or string). eg: | | | 1. return [1]; | | | 2. return [x, 'abx']; | | | 3. return [x, x + y,'abx']; | | | 4. return []; | | | 5. if (x < y) | | | return [x, x - y, 'result-set1', 123.456]; | | | else | | | return [y, x + y, 'result-set2']; | +----------+---------------------------------------------------------+ | ?: | Ternary conditional statement, similar to that of the | | | above denoted if-statement. | | | eg: | | | 1. x ? y : z | | | 2. x + 1 > 2y ? z + 1 : (w / v) | | | 3. min(x,y) > z ? (x < y + 1) ? x : y : (w * v) | +----------+---------------------------------------------------------+ | ~ | Evaluate each sub-expression, then return as the result | | | the value of the last sub-expression. This is sometimes | | | known as multiple sequence point evaluation. | | | eg: | | | ~(i := x + 1, j := y / z, k := sin(w/u)) == (sin(w/u))) | | | ~{i := x + 1; j := y / z; k := sin(w/u)} == (sin(w/u))) | +----------+---------------------------------------------------------+ | [*] | Evaluate any consequent for which its case statement is | | | true. The return value will be either zero or the result| | | of the last consequent to have been evaluated. | | | eg: | | | [*] | | | { | | | case (x + 1) > (y - 2) : x := z / 2 + sin(y / pi); | | | case (x + 2) < abs(y + 3) : w / 4 + min(5y,9); | | | case (x + 3) == (y * 4) : y := abs(z / 6) + 7y; | | | } | +----------+---------------------------------------------------------+ | [] | The vector size operator returns the size of the vector | | | being actioned. | | | eg: | | | 1. v[] | | | 2. max_size := max(v0[],v1[],v2[],v3[]) | +----------+---------------------------------------------------------+ Note: In the tables above, the symbols x, y, z, w, u and v where appropriate may represent any of one the following: 1. Literal numeric/string value 2. A variable 3. A vector element 4. A vector 5. A string 6. An expression comprised of [1], [2] or [3] (eg: 2 + x / vec[3]) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [09 - Fundamental Types] ExprTk supports three fundamental types which can be used freely in expressions. The types are as follows: (1) Scalar (2) Vector (3) String (1) Scalar Type The scalar type is a singular numeric value. The underlying type is that used to specialize the ExprTk components (float, double, long double, MPFR et al). (2) Vector Type The vector type is a fixed size sequence of contiguous scalar values. A vector can be indexed resulting in a scalar value. Operations between a vector and scalar will result in a vector with a size equal to that of the original vector, whereas operations between vectors will result in a vector of size equal to that of the smaller of the two. (3) String Type The string type is a variable length sequence of 8-bit chars. Strings can be assigned and concatenated to one another, they can also be manipulated via sub-ranges using the range definition syntax. Strings however can not interact with scalar or vector types. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [10 - COMPONENTS] There are three primary components, that are specialized upon a given numeric type, which make up the core of ExprTk. The components are as follows: (1) Symbol Table exprtk::symbol_table<NumericType> (2) Expression exprtk::expression<NumericType> (3) Parser exprtk::parser<NumericType> (1) Symbol Table A structure that is used to store references to variables, constants and functions that are to be used within expressions. Furthermore in the context of composited recursive functions the symbol table can also be thought of as a simple representation of a stack specific for the expression(s) that reference it. The following is a list of the types a symbol table can handle: (a) Numeric variables (b) Numeric constants (c) Numeric vector elements (d) String variables (e) String constants (f) Functions (g) Vararg functions During the compilation process if an expression is found to require any of the elements noted above, the expression's associated symbol_table will be queried for the element and if present a reference to the element will be embedded within the expression's AST. This allows for the original element to be modified independently of the expression instance and to also allow the expression to be evaluated using the current value of the element. The example below demonstrates the relationship between variables, symbol_table and expression. Note the variables are modified as they normally would in a program, and when the expression is evaluated the current values assigned to the variables will be used. typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; symbol_table_t symbol_table; expression_t expression; parser_t parser; double x = 0; double y = 0; std::string expression_string = "x * y + 3"; symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); expression.register_symbol_table(symbol_table); parser.compile(expression_string,expression); x = 1.0; y = 2.0; expression.value(); // 1 * 2 + 3 x = 3.7; expression.value(); // 3.7 * 2 + 3 y = -9.0; expression.value(); // 3.7 * -9 + 3 // 'x * -9 + 3' for x in range of [0,100) in steps of 0.0001 for (x = 0.0; x < 100.0; x += 0.0001) { expression.value(); // x * -9 + 3 } Note: It is possible to register multiple symbol_tables with a single expression object. In the event an expression has multiple symbol tables, and where there exists conflicts between symbols, the compilation stage will resolve the conflicts based on the order of registration of the symbol_tables to the expression. typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; symbol_table_t symbol_table0; symbol_table_t symbol_table1; expression_t expression; parser_t parser; double x0 = 123.0; double x1 = 678.0; std::string expression_string = "x + 1"; symbol_table0.add_variable("x",x0); symbol_table1.add_variable("x",x1); expression.register_symbol_table(symbol_table0); expression.register_symbol_table(symbol_table1); parser.compile(expression_string,expression); expression.value(); // 123 + 1 (2) Expression A structure that holds an abstract syntax tree or AST for a specified expression and is used to evaluate said expression. Evaluation of the expression is accomplished by performing a post-order traversal of the AST. If a compiled Expression uses variables or user defined functions, it will have an associated Symbol Table, which will contain references to said variables, functions or strings. An example AST structure for the denoted expression is as follows: Expression: z := (x + y^-2.345) * sin(pi / min(w - 7.3,v)) [Root] | [Assignment] ________/ \_____ / \ Variable(z) [Multiplication] ____________/ \___________ / \ / [Unary-Function(sin)] [Addition] | ____/ \____ [Division] / \ ___/ \___ Variable(x) [Exponentiation] / \ ______/ \______ Constant(pi) [Binary-Function(min)] / \ ____/ \____ Variable(y) [Negation] / \ | / Variable(v) Constant(2.345) / / [Subtraction] ____/ \____ / \ Variable(w) Constant(7.3) The above denoted AST will be evaluated in the following order: (01) Load Variable (z) (10) Load Constant (7.3) (02) Load Variable (x) (11) Subtraction (09 & 10) (03) Load Variable (y) (12) Load Variable (v) (04) Load Constant (2.345) (13) Min (11 & 12) (05) Negation (04) (14) Division (08 & 13) (06) Exponentiation (03 & 05) (15) Sin (14) (07) Addition (02 & 06) (16) Multiplication (07 & 15) (08) Load Constant (pi) (17) Assignment (01 & 16) (09) Load Variable (w) (3) Parser A component which takes as input a string representation of an expression and attempts to compile said input with the result being an instance of Expression. If an error is encountered during the compilation process, the parser will stop compiling and return an error status code, with a more detailed description of the error(s) and its location within the input provided by the 'get_error' interface. Note: The exprtk::expression and exprtk::symbol_table components are reference counted entities. Copy constructing or assigning to or from either component will result in a shallow copy and a reference count increment, rather than a complete replication. Furthermore the expression and symbol_table components being Default-Constructible, Copy-Constructible and Copy-Assignable make them compatible with various C++ standard library containers and adaptors such as std::vector, std::map, std::stack etc. The following is an example of two unique expressions, after having being instantiated and compiled, one expression is assigned to the other. The diagrams depict their initial and post assignment states, including which control block each expression references and their associated reference counts. exprtk::expression e0; // constructed expression, eg: x + 1 exprtk::expression e1; // constructed expression, eg: 2z + y +-----[ e0 cntrl block]----+ +-----[ e1 cntrl block]-----+ | 1. Expression Node 'x+1' | | 1. Expression Node '2z+y' | | 2. Ref Count: 1 |<-+ | 2. Ref Count: 1 |<-+ +--------------------------+ | +---------------------------+ | | | +--[ e0 expression]--+ | +--[ e1 expression]--+ | | 1. Reference to ]------+ | 1. Reference to ]-------+ | e0 Control Block | | e1 Control Block | +--------------------+ +--------------------+ e0 = e1; // e0 and e1 are now 2z+y +-----[ e1 cntrl block]-----+ | 1. Expression Node '2z+y' | +----------->| 2. Ref Count: 2 |<----------+ | +---------------------------+ | | | | +--[ e0 expression]--+ +--[ e1 expression]--+ | +---[ 1. Reference to | | 1. Reference to ]---+ | e1 Control Block | | e1 Control Block | +--------------------+ +--------------------+ The reason for the above complexity and restrictions of deep copies for the expression and symbol_table components is because expressions may include user defined variables or functions. These are embedded as references into the expression's AST. When copying an expression, said references need to also be copied. If the references are blindly copied, it will then result in two or more identical expressions utilizing the exact same references for variables. This obviously is not the default assumed scenario and will give rise to non-obvious behaviours when using the expressions in various contexts such as muli-threading et al. The prescribed method for cloning an expression is to compile it from its string form. Doing so will allow the one to properly consider the exact source of user defined variables and functions. Note: The exprtk::parser is a non-copyable and non-thread safe component, and should only be shared via either a reference, a shared pointer or a std::ref mechanism, and considerations relating to synchronisation taken into account where appropriate. The parser represents an object factory, specifically a factory of expressions, and generally should not be instantiated solely on a per expression compilation basis. The following diagram and example depicts the flow of data and operations for compiling multiple expressions via the parser and inserting the newly minted exprtk::expression instances into a std::vector. +--[exprtk::parser]--+ | expression factory | +---->- compile(....) ->---+ | +--------------------+ | Expressions | | Expressions as in string form A V exprtk::expression | | instances [s0:'x+1']------+ | | +-[e0: x+1] | | | | [s1:'2z+y']-----+--+ +-->+-[e1: 2z+y] | | [s2:'sin(k+w)']-+ +-[e2: sin(k+w)] const std::string expression_str[3] = { "x + 1", "2x + y", "sin(k + w)" }; std::vector<expression_t> expression_list; parser_t parser; expression_t expression; symbol_table_t symbol_table; expression.register_symbol_table(symbol_table); for (std::size_t i = 0; i < 3; ++i) { if (parser.compile(expression_str[i],expression)) { expression_list.push_back(expression); } else std::cout << "Error in " << expression_str[i] << "\n"; } for (auto e : expression_list) { e.value(); } ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [11 - COMPILATION OPTIONS] The exprtk::parser when being instantiated takes as input a set of options to be used during the compilation process of expressions. An example instantiation of exprtk::parser where only the joiner, commutative and strength reduction options are enabled is as follows: typedef exprtk::parser<NumericType>::settings_t settings_t; std::size_t compile_options = settings_t::e_joiner + settings_t::e_commutative_check + settings_t::e_strength_reduction; parser_t parser(compile_options); Currently seven types of compile time options are supported, and enabled by default. The options and their explanations are as follows: (1) Replacer (2) Joiner (3) Numeric Check (4) Bracket Check (5) Sequence Check (6) Commutative Check (7) Strength Reduction Check (1) Replacer (e_replacer) Enable replacement of specific tokens with other tokens. For example the token "true" of type symbol will be replaced with the numeric token of value one. (a) (x < y) == true ---> (x < y) == 1 (b) false == (x > y) ---> 0 == (x > y) (2) Joiner (e_joiner) Enable joining of multi-character operators that may have been incorrectly disjoint in the string representation of the specified expression. For example the consecutive tokens of ">" "=" will become ">=" representing the "greater than or equal to" operator. If not properly resolved the original form will cause a compilation error. The following is a listing of the scenarios that the joiner can handle: (a) '>' '=' ---> '>=' (gte) (b) '<' '=' ---> '<=' (lte) (c) '=' '=' ---> '==' (equal) (d) '!' '=' ---> '!=' (not-equal) (e) '<' '>' ---> '<>' (not-equal) (f) ':' '=' ---> ':=' (assignment) (g) '+' '=' ---> '+=' (addition assignment) (h) '-' '=' ---> '-=' (subtraction assignment) (i) '*' '=' ---> '*=' (multiplication assignment) (j) '/' '=' ---> '/=' (division assignment) (k) '%' '=' ---> '%=' (modulo assignment) (l) '+' '-' ---> '-' (subtraction) (m) '-' '+' ---> '-' (subtraction) (n) '-' '-' ---> '+' (addition) (o) '<=' '>' ---> '<=>' (swap) An example of the transformation that takes place is as follows: (a) (x > = y) and (z ! = w) ---> (x >= y) and (z != w) (3) Numeric Check (e_numeric_check) Enable validation of tokens representing numeric types so as to catch any errors prior to the costly process of the main compilation step commencing. (4) Bracket Check (e_bracket_check) Enable the check for validating the ordering of brackets in the specified expression. (5) Sequence Check (e_sequence_check) Enable the check for validating that sequences of either pairs or triplets of tokens make sense. For example the following sequence of tokens when encountered will raise an error: (a) (x + * 3) ---> sequence error (6) Commutative Check (e_commutative_check) Enable the check that will transform sequences of pairs of tokens that imply a multiplication operation. The following are some examples of such transformations: (a) 2x ---> 2 * x (b) 25x^3 ---> 25 * x^3 (c) 3(x + 1) ---> 3 * (x + 1) (d) (x + 1)4 ---> (x + 1) * 4 (e) 5foo(x,y) ---> 5 * foo(x,y) (f) foo(x,y)6 + 1 ---> foo(x,y) * 6 + 1 (g) (4((2x)3)) ---> 4 * ((2 * x) * 3) (h) w(x) + (y)z ---> w * x + y * z (7) Strength Reduction Check (e_strength_reduction) Enable the use of strength reduction optimisations during the compilation process. In ExprTk strength reduction optimisations predominantly involve transforming sub-expressions into other forms that are algebraically equivalent yet less costly to compute. The following are examples of the various transformations that can occur: (a) (x / y) / z ---> x / (y * z) (b) (x / y) / (z / w) ---> (x * w) / (y * z) (c) (2 * x) - (2 * y) ---> 2 * (x - y) (d) (2 / x) / (3 / y) ---> (2 / 3) / (x * y) (e) (2 * x) * (3 * y) ---> (2 * 3) * (x * y) Note: When using strength reduction in conjunction with expressions whose inputs or sub-expressions may result in values nearing either of the bounds of the underlying numeric type (eg: double), there may be the possibility of a decrease in the precision of results. In the following example the given expression which represents an attempt at computing the average between x and y will be transformed as follows: (0.5 * x) + (y * 0.5) ---> 0.5 * (x + y) There may be situations where the above transformation will cause numerical overflows and that the original form of the expression is desired over the strength reduced form. In these situations it is best to turn off strength reduction optimisations or to use a type with a larger numerical bound. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [12 - SPECIAL FUNCTIONS] The purpose of special functions in ExprTk is to provide compiler generated equivalents of common mathematical expressions which can be invoked by using the 'special function' syntax (eg: $f12(x,y,z) or $f82(x,y,z,w)). Special functions dramatically decrease the total evaluation time of expressions which would otherwise have been written using the common form by reducing the total number of nodes in the evaluation tree of an expression and by also leveraging the compiler's ability to correctly optimize such expressions for a given architecture. 3-Parameter 4-Parameter +-------------+-------------+ +--------------+------------------+ | Prototype | Operation | | Prototype | Operation | +-------------+-------------+ +--------------+------------------+ $f00(x,y,z) | (x + y) / z $f48(x,y,z,w) | x + ((y + z) / w) $f01(x,y,z) | (x + y) * z $f49(x,y,z,w) | x + ((y + z) * w) $f02(x,y,z) | (x + y) - z $f50(x,y,z,w) | x + ((y - z) / w) $f03(x,y,z) | (x + y) + z $f51(x,y,z,w) | x + ((y - z) * w) $f04(x,y,z) | (x - y) + z $f52(x,y,z,w) | x + ((y * z) / w) $f05(x,y,z) | (x - y) / z $f53(x,y,z,w) | x + ((y * z) * w) $f06(x,y,z) | (x - y) * z $f54(x,y,z,w) | x + ((y / z) + w) $f07(x,y,z) | (x * y) + z $f55(x,y,z,w) | x + ((y / z) / w) $f08(x,y,z) | (x * y) - z $f56(x,y,z,w) | x + ((y / z) * w) $f09(x,y,z) | (x * y) / z $f57(x,y,z,w) | x - ((y + z) / w) $f10(x,y,z) | (x * y) * z $f58(x,y,z,w) | x - ((y + z) * w) $f11(x,y,z) | (x / y) + z $f59(x,y,z,w) | x - ((y - z) / w) $f12(x,y,z) | (x / y) - z $f60(x,y,z,w) | x - ((y - z) * w) $f13(x,y,z) | (x / y) / z $f61(x,y,z,w) | x - ((y * z) / w) $f14(x,y,z) | (x / y) * z $f62(x,y,z,w) | x - ((y * z) * w) $f15(x,y,z) | x / (y + z) $f63(x,y,z,w) | x - ((y / z) / w) $f16(x,y,z) | x / (y - z) $f64(x,y,z,w) | x - ((y / z) * w) $f17(x,y,z) | x / (y * z) $f65(x,y,z,w) | ((x + y) * z) - w $f18(x,y,z) | x / (y / z) $f66(x,y,z,w) | ((x - y) * z) - w $f19(x,y,z) | x * (y + z) $f67(x,y,z,w) | ((x * y) * z) - w $f20(x,y,z) | x * (y - z) $f68(x,y,z,w) | ((x / y) * z) - w $f21(x,y,z) | x * (y * z) $f69(x,y,z,w) | ((x + y) / z) - w $f22(x,y,z) | x * (y / z) $f70(x,y,z,w) | ((x - y) / z) - w $f23(x,y,z) | x - (y + z) $f71(x,y,z,w) | ((x * y) / z) - w $f24(x,y,z) | x - (y - z) $f72(x,y,z,w) | ((x / y) / z) - w $f25(x,y,z) | x - (y / z) $f73(x,y,z,w) | (x * y) + (z * w) $f26(x,y,z) | x - (y * z) $f74(x,y,z,w) | (x * y) - (z * w) $f27(x,y,z) | x + (y * z) $f75(x,y,z,w) | (x * y) + (z / w) $f28(x,y,z) | x + (y / z) $f76(x,y,z,w) | (x * y) - (z / w) $f29(x,y,z) | x + (y + z) $f77(x,y,z,w) | (x / y) + (z / w) $f30(x,y,z) | x + (y - z) $f78(x,y,z,w) | (x / y) - (z / w) $f31(x,y,z) | x * y^2 + z $f79(x,y,z,w) | (x / y) - (z * w) $f32(x,y,z) | x * y^3 + z $f80(x,y,z,w) | x / (y + (z * w)) $f33(x,y,z) | x * y^4 + z $f81(x,y,z,w) | x / (y - (z * w)) $f34(x,y,z) | x * y^5 + z $f82(x,y,z,w) | x * (y + (z * w)) $f35(x,y,z) | x * y^6 + z $f83(x,y,z,w) | x * (y - (z * w)) $f36(x,y,z) | x * y^7 + z $f84(x,y,z,w) | x*y^2 + z*w^2 $f37(x,y,z) | x * y^8 + z $f85(x,y,z,w) | x*y^3 + z*w^3 $f38(x,y,z) | x * y^9 + z $f86(x,y,z,w) | x*y^4 + z*w^4 $f39(x,y,z) | x * log(y)+z $f87(x,y,z,w) | x*y^5 + z*w^5 $f40(x,y,z) | x * log(y)-z $f88(x,y,z,w) | x*y^6 + z*w^6 $f41(x,y,z) | x * log10(y)+z $f89(x,y,z,w) | x*y^7 + z*w^7 $f42(x,y,z) | x * log10(y)-z $f90(x,y,z,w) | x*y^8 + z*w^8 $f43(x,y,z) | x * sin(y)+z $f91(x,y,z,w) | x*y^9 + z*w^9 $f44(x,y,z) | x * sin(y)-z $f92(x,y,z,w) | (x and y) ? z : w $f45(x,y,z) | x * cos(y)+z $f93(x,y,z,w) | (x or y) ? z : w $f46(x,y,z) | x * cos(y)-z $f94(x,y,z,w) | (x < y) ? z : w $f47(x,y,z) | x ? y : z $f95(x,y,z,w) | (x <= y) ? z : w $f96(x,y,z,w) | (x > y) ? z : w $f97(x,y,z,w) | (x >= y) ? z : w $f98(x,y,z,w) | (x == y) ? z : w $f99(x,y,z,w) | x*sin(y)+z*cos(w) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [13 - VARIABLE , VECTOR & STRING DEFINITION] ExprTk supports the definition of expression local variables, vectors and strings. The definitions must be unique as shadowing is not allowed and object life-times are based on scope. Definitions use the following general form: var <name> := <initialiser>; (1) Variable Definition Variables are of numeric type denoting a single value. They can be explicitly initialised to a value, otherwise they will be defaulted to zero. The following are examples of variable definitions: (a) Initialise x to zero var x; (b) Initialise y to three var y := 3; (c) Initialise z to the expression var z := if(max(1,x + y) > 2,w,v); (2) Vector Definition Vectors are arrays of a common numeric type. The elements in a vector can be explicitly initialised, otherwise they will all be defaulted to zero. The following are examples of vector definitions: (a) Initialise all values to zero var x[3]; (b) Initialise all values to zero var x[3] := {}; (c) Initialise all values to given expression var x[3] := [123 + 3y + sin(w/z)]; (d) Initialise the first two values, all other elements to zero var x[3] := { 1 + x[2], sin(y[0] / x[]) + 3 }; (e) Initialise the first three (all) values var x[3] := { 1, 2, 3 }; (f) Initialise vector from a vector var x[4] := { 1, 2, 3, 4 }; var y[3] := x; (g) Initialise vector from a smaller vector var x[3] := { 1, 2, 3 }; var y[5] := x; // 1, 2, 3, ??, ?? (h) Non-initialised vector var x[3] := null; // ?? ?? ?? (i) Error as there are too many initialisers var x[3] := { 1, 2, 3, 4 }; (j) Error as a vector of size zero is not allowed. var x[0]; (3) String Definition Strings are sequences comprised of 8-bit characters. They can only be defined with an explicit initialisation value. The following are examples of string variable definitions: (a) Initialise to a string var x := 'abc'; (b) Initialise to a string expression var x := 'abc' + '123'; (c) Initialise to a string range var x := 'abc123'[2:4]; (d) Initialise to another string variable var x := 'abc'; var y := x; (e) Initialise to another string variable range var x := 'abc123'; var y := x[2:4]; (f) Initialise to a string expression var x := 'abc'; var y := x + '123'; (g) Initialise to a string expression range var x := 'abc'; var y := (x + '123')[1:3]; (4) Return Value Variable and vector definitions have a return value. In the case of variable definitions, the value to which the variable is initialised will be returned. Where as for vectors, the value of the first element (eg: v[0]) will be returned. 8 == ((var x := 7;) + 1) 4 == (var y[3] := {4, 5, 6};) (5) Variable/Vector Assignment The value of a variable can be assigned to a vector and a vector or a vector expression can be assigned to a variable. (a) Variable To Vector: Every element of the vector is assigned the value of the variable or expression. var x := 3; var y[3] := { 1, 2, 3 }; y := x + 1; (b) Vector To Variable: The variable is assigned the value of the first element of the vector (aka vec[0]) var x := 3; var y[3] := { 1, 2, 3 }; x := y + 1; Note: During the expression compilation phase, tokens are classified based on the following priorities: (a) Reserved keywords or operators (+, -, and, or, etc) (b) Base functions (abs, sin, cos, min, max etc) (c) Symbol table variables (d) Expression local defined variables (e) Symbol table functions (f) Unknown symbol resolver based variables ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [14 - VECTOR PROCESSING] ExprTk provides support for various forms of vector oriented arithmetic, inequalities and processing. The various supported pairs are as follows: (a) vector and vector (eg: v0 + v1) (b) vector and scalar (eg: v + 33) (c) scalar and vector (eg: 22 * v) The following is a list of operations that can be used in conjunction with vectors: (a) Arithmetic: +, -, *, /, % (b) Exponentiation: vector ^ scalar (c) Assignment: :=, +=, -=, *=, /=, %=, <=> (d) Inequalities: <, <=, >, >=, ==, =, equal (e) Boolean logic: and, nand, nor, or, xnor, xor (f) Unary operations: abs, acos, acosh, asin, asinh, atan, atanh, ceil, cos, cosh, cot, csc, deg2grad, deg2rad, erf, erfc, exp, expm1, floor, frac, grad2deg, log, log10, log1p, log2, rad2deg, round, sec, sgn, sin, sinc, sinh, sqrt, swap, tan, tanh, trunc (g) Aggregate and Reduce operations: avg, max, min, mul, sum Note: When one of the above described operations is being performed between two vectors, the operation will only span the size of the smallest vector. The elements of the larger vector outside of the range will not be included. The following simple example demonstrates the vector processing capabilities by computing the dot-product of the vectors v0 and v1 and then assigning it to the variable v0dotv1: var v0[3] := { 1, 2, 3 }; var v1[3] := { 4, 5, 6 }; var v0dotv1 := sum(v0 * v1); The following is a for-loop based implementation that is equivalent to the previously mentioned dot-product computation expression: var v0[3] := { 1, 2, 3 }; var v1[3] := { 4, 5, 6 }; var v0dotv1; for (var i := 0; i < min(v0[],v1[]); i += 1) { v0dotv1 += (v0[i] * v1[i]); } Note: When the aggregate operations denoted above are used in conjunction with a vector or vector expression, the return value is not a vector but rather a single value. var x[3] := { 1, 2, 3 }; sum(x) == 6 sum(1 + 2x) == 15 avg(3x + 1) == 7 min(1 / x) == (1 / 3) max(x / 2) == (3 / 2) sum(x > 0 and x < 5) == x[] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [15 - USER DEFINED FUNCTIONS] ExprTk provides a means whereby custom functions can be defined and utilized within expressions. The concept requires the user to provide a reference to the function coupled with an associated name that will be invoked within expressions. Functions may take numerous inputs but will always return a single value of the underlying numeric type. During expression compilation when required the reference to the function will be obtained from the associated symbol_table and be embedded into the expression. There are five types of function interface: +---+----------------------+-------------+----------------------+ | # | Name | Return Type | Input Types | +---+----------------------+-------------+----------------------+ | 1 | ifunction | Scalar | Scalar | | 2 | ivararg_function | Scalar | Scalar | | 3 | igeneric_function | Scalar | Scalar,Vector,String | | 4 | igeneric_function II | String | Scalar,Vector,String | | 5 | function_compositor | Scalar | Scalar | +---+----------------------+-------------+----------------------+ (1) ifunction This interface supports zero to 20 input parameters of only the scalar type (numbers). The usage requires a custom function be derived from ifunction and to override one of the 21 function operators. As part of the constructor the custom function will define how many parameters it expects to handle. The following example defines a 3 parameter function called 'foo': template <typename T> struct foo : public exprtk::ifunction<T> { foo() : exprtk::ifunction<T>(3) {} T operator()(const T& v1, const T& v2, const T& v3) { return T(1) + (v1 * v2) / T(v3); } }; (2) ivararg_function This interface supports a variable number of scalar arguments as input into the function. The function operator interface uses a std::vector specialized upon type T to facilitate parameter passing. The following example defines a vararg function called 'boo': template <typename T> struct boo : public exprtk::ivararg_function<T> { inline T operator()(const std::vector<T>& arglist) { T result = T(0); for (std::size_t i = 0; i < arglist.size(); ++i) { result += arglist[i] / arglist[i > 0 ? (i - 1) : 0]; } return result; } }; (3) igeneric_function This interface supports a variable number of arguments and types as input into the function. The function operator interface uses a std::vector specialized upon the type_store type to facilitate parameter passing. Scalar <-- function(i_0, i_1, i_2....., i_N) The fundamental types that can be passed into the function as parameters and their views are as follows: (1) Scalar - scalar_view (2) Vector - vector_view (3) String - string_view The above denoted type views provide non-const reference-like access to each parameter, as such modifications made to the input parameters will persist after the function call has completed. The following example defines a generic function called 'too': template <typename T> struct too : public exprtk::igeneric_function<T> { typedef typename exprtk::igeneric_function<T>::parameter_list_t parameter_list_t; too() {} inline T operator()(parameter_list_t parameters) { for (std::size_t i = 0; i < parameters.size(); ++i) { ... } return T(0); } }; In the example above, the input 'parameters' to the function operator, parameter_list_t, is a type of std::vector of type_store. Each type_store instance has a member called 'type' which holds the enumeration pertaining to the underlying type of the type_store. There are three type enumerations: (1) e_scalar - literals, variables, vector elements, expressions eg: 123.456, x, vec[3x + 1], 2x + 3 (2) e_vector - vectors, vector expressions eg: vec1, 2 * vec1 + vec2 / 3 (3) e_string - strings, string literals and range variants of both eg: 'AString', s0, 'AString'[x:y], s1[1 + x:] + 'AString' Each of the parameters can be accessed using its designated view. A typical loop for processing the parameters is as follows: inline T operator()(parameter_list_t parameters) { typedef typename exprtk::igeneric_function<T>::generic_type generic_type; typedef typename generic_type::scalar_view scalar_t; typedef typename generic_type::vector_view vector_t; typedef typename generic_type::string_view string_t; for (std::size_t i = 0; i < parameters.size(); ++i) { generic_type& gt = parameters[i]; if (generic_type::e_scalar == gt.type) { scalar_t x(gt); ... } else if (generic_type::e_vector == gt.type) { vector_t vector(gt); ... } else if (generic_type::e_string == gt.type) { string_t string(gt); ... } } return T(0); } Most often than not a custom generic function will require a specific sequence of parameters, rather than some arbitrary sequence of types. In those situations, ExprTk can perform compile-time type checking to validate that function invocations are carried out using the correct sequence of parameters. Furthermore performing the checks at compile -time rather than at run-time (aka every time the function is invoked) will result in expression evaluation performance gains. Compile-time type checking of input parameters can be requested by passing a string to the constructor of the igeneric_function that represents the required sequence of parameter types. When no parameter sequence is provided, it is implied the function can accept a variable number of parameters comprised of any of the fundamental types. Each fundamental type has an associated character. The following is a listing of said characters and their meanings: (1) T - Scalar (2) V - Vector (3) S - String (4) Z - Zero or no parameters (5) ? - Any type (Scalar, Vector or String) (6) * - Wildcard operator (7) | - Parameter sequence delimiter No other characters other than the seven denoted above may be included in the parameter sequence definition. If any such invalid characters do exist, registration of the associated generic function to a symbol table ('add_function' method) will fail. If the parameter sequence is modified resulting in it becoming invalid after having been added to the symbol table but before the compilation step, a compilation error will be incurred. The following example demonstrates a simple generic function implementation with a user specified parameter sequence: template <typename T> struct moo : public exprtk::igeneric_function<T> { typedef typename exprtk::igeneric_function<T>::parameter_list_t parameter_list_t; moo() : exprtk::igeneric_function<T>("SVTT") {} inline T operator()(parameter_list_t parameters) { ... } }; In the example above the generic function 'moo' expects exactly four parameters in the following sequence: (1) String (2) Vector (3) Scalar (4) Scalar Note: The 'Z' or no parameter option may not be used in conjunction with any other type option in a parameter sequence. When incorporated in the parameter sequence list, the no parameter option indicates that the function may be invoked without any parameters being passed. For more information refer to the section: 'Zero Parameter Functions' (4) igeneric_function II This interface is identical to the igeneric_function, in that in can consume an arbitrary number of parameters of varying type, but the difference being that the function returns a string and as such is treated as a string when invoked within expressions. As a result the function call can alias a string and interact with other strings in situations such as concatenation and equality operations. String <-- function(i_0, i_1, i_2....., i_N) The following example defines a generic function named 'toupper' with the string return type function operator being explicitly overridden: template <typename T> struct toupper : public exprtk::igeneric_function<T> { typedef exprtk::igeneric_function<T> igenfunct_t typedef typename igenfunct_t::generic_type generic_t; typedef typename igenfunct_t::parameter_list_t parameter_list_t; typedef typename generic_t::string_view string_t; toupper() : exprtk::igeneric_function<T>("S",igenfunct_t::e_rtrn_string) {} inline T operator()(std::string& result, parameter_list_t parameters) { result.clear(); string_t string(params[0]); for (std::size_t i = 0; i < string.size(); ++i) { result += std::toupper(string[i]); } return T(0); } }; In the example above the generic function 'toupper' expects only one input parameter of type string, as noted by the parameter sequence string passed during the constructor. Furthermore a second parameter is passed to the constructor indicating that it should be treated as a string returning function - by default it is assumed to be a scalar returning function. When executed, the function will return as a result a copy of the input string converted to uppercase form. An example expression using the toupper function registered as the symbol 'toupper' is as follows: "'ABCDEF' == toupper('aBc') + toupper('DeF')" Note: When adding a string type returning generic function to a symbol table the 'add_function' is invoked. The example below demonstrates how this can be done: toupper<T> tu; exprtk::symbol_table<T> symbol_table; symbol_table.add_function("toupper",tu); Note: Two further refinements to the type checking facility are the possibilities of a variable number of common types which can be accomplished by using a wildcard '*' and a special 'any type' which is done using the '?' character. It should be noted that the wildcard operator is associated with the previous type in the sequence and implies one or more of that type. template <typename T> struct zoo : public exprtk::igeneric_function<T> { typedef typename exprtk::igeneric_function<T>::parameter_list_t parameter_list_t; zoo() : exprtk::igeneric_function<T>("SVT*V?") {} inline T operator()(parameter_list_t parameters) { ... } }; In the example above the generic function 'zoo' expects at least five parameters in the following sequence: (1) String (2) Vector (3) One or more Scalars (4) Vector (5) Any type (one type of either a scalar, vector or string) A final piece of type checking functionality is available for the scenarios where a single function name is intended to be used for multiple distinct parameter sequences, another name for this feature is function overloading. The parameter sequences are passed to the constructor as a single string delimited by the pipe '|' character. Two specific overrides of the function operator are provided one for standard generic functions and one for string returning functions. The overrides are as follows: // Scalar <-- function(psi,i_0,i_1,....,i_N) inline T operator()(const std::size_t& ps_index, parameter_list_t parameters) { ... } // String <-- function(psi,i_0,i_1,....,i_N) inline T operator()(const std::size_t& ps_index, std::string& result, parameter_list_t parameters) { ... } When the function operator is invoked the 'ps_index' parameter will have as its value the index of the parameter sequence that matches the specific invocation. This way complex and time consuming type checking conditions need not be executed in the function itself but rather a simple and efficient dispatch to a specific implementation for that particular parameter sequence can be performed. template <typename T> struct roo : public exprtk::igeneric_function<T> { typedef typename exprtk::igeneric_function<T>::parameter_list_t parameter_list_t; moo() : exprtk::igeneric_function<T>("SVTT|SS|TTV|S?V*S") {} inline T operator()(const std::size_t& ps_index, parameter_list_t parameters) { ... } }; In the example above there are four distinct parameter sequences that can be processed by the generic function 'roo'. Any other parameter sequences will cause a compilation error. The four valid sequences are as follows: Sequence-0 Sequence-1 Sequence-2 Sequence-3 'SVTT' 'SS' 'TTV' 'S?V*S' (1) String (1) String (1) Scalar (1) String (2) Vector (2) String (2) Scalar (2) Any Type (3) Scalar (3) Vector (3) One or more Vectors (4) Scalar (4) String (5) function_compositor The function compositor is a factory that allows one to define and construct a function using ExprTk syntax. The functions are limited to returning a single scalar value and consuming up to six parameters as input. All composited functions are registered with a symbol table, allowing them to call other functions that have been registered with the symbol table instance. Furthermore the functions can be recursive in nature due to the inherent function prototype forwarding that occurs during construction. The following example defines, by using two different methods, composited functions and implicitly registering the functions with the denoted symbol table. typedef exprtk::symbol_table<T> symbol_table_t; typedef exprtk::function_compositor<T> compositor_t; typedef typename compositor_t::function function_t; symbol_table_t symbol_table; compositor_t compositor(symbol_table); // define function koo0(v1,v2) { ... } compositor .add( function_t( "koo0", " 1 + cos(v1 * v2) / 3;", "v1","v2")); // define function koo1(x,y,z) { ... } compositor .add(function_t() .name("koo1") .var("x").var("y").var("z") .expression("1 + cos(x * y) / z;")); (6) Using Functions In Expressions For the above denoted custom and composited functions to be used in an expression, an instance of each function needs to be registered with a symbol_table that has been associated with the expression instance. The following demonstrates how all the pieces are put together: typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; typedef exprtk::function_compositor<double> compositor_t; typedef typename compositor_t::function function_t; foo<double> f; boo<double> b; too<double> t; toupper<double> tu; symbol_table_t symbol_table; compositor_t compositor(symbol_table); symbol_table.add_function("foo",f); symbol_table.add_function("boo",b); symbol_table.add_function("too",t); symbol_table.add_function("toupper", tu, symbol_table_t::e_ft_strfunc); compositor .add(function_t() .name("koo") .var("v1") .var("v2") .expression("1 + cos(v1 * v2) / 3;")); expression_t expression; expression.register_symbol_table(symbol_table); std::string expression_str = " if (foo(1,2,3) + boo(1) > boo(1/2,2/3,3/4,4/5)) " " koo(3,4); " " else " " too(2 * v1 + v2 / 3, 'abcdef'[2:4], 3.3); " " "; parser_t parser; parser.compile(expression_str,expression); expression.value(); (7) Function Side-Effects All function calls are assumed to have side-effects by default. This assumption implicitly disables constant folding optimisations when all parameters being passed to the function are deduced as being constants at compile time. If it is certain that the function being registered does not have any side effects and can be correctly constant folded where appropriate, then during the construction of the function the side-effect trait of the function can be disabled. template <typename T> struct foo : public exprtk::ifunction<T> { foo() : exprtk::ifunction<T>(3) { exprtk::disable_has_side_effects(*this); } T operator()(const T& v1, const T& v2, const T& v3) { ... } }; (8) Zero Parameter Functions When either an ifunction, ivararg_function or igeneric_function derived type is defined with zero number of parameters, there are two calling conventions within expressions that are allowed. For a function named 'foo' with zero input parameters the calling styles are as follows: (1) x + sin(foo()- 2) / y (2) x + sin(foo - 2) / y By default the zero parameter trait is disabled. In order to enable it, a process similar to that of enabling of the side effect trait is carried out: template <typename T> struct foo : public exprtk::ivararg_function<T> { foo() { exprtk::enable_zero_parameters(*this); } inline T operator()(const std::vector<T>& arglist) { ... } }; Note: For the igeneric_function type, there also needs to be a 'Z' parameter sequence defined inorder for the zero parameter trait to properly take effect otherwise a compilation error will occur. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [16 - EXPRESSION DEPENDENTS] Any expression that is not a literal (aka constant) will have dependencies. The types of 'dependencies' an expression can have are as follows: (a) Variables (b) Vectors (c) Strings (d) Functions (e) Assignments In the following example the denoted expression has its various dependencies listed: z := abs(x + sin(2 * pi / y)) (a) Variables: x, y, z and pi (b) Functions: abs, sin (c) Assignments: z ExprTk allows for the derivation of expression dependencies via the 'dependent_entity_collector' (DEC). When activated either through 'compile_options' at the construction of the parser or through calls to enabler methods just prior to compilation, the DEC will proceed to collect any of the relevant types that are encountered during the parsing phase. Once the compilation process has successfully completed, the caller can then obtain a list of symbols and their associated types from the DEC. The kinds of questions one can ask regarding the dependent entities within an expression are as follows: * What user defined or local variables, vectors or strings are used? * What functions or custom user functions are used? * Which variables, vectors or strings have values assigned to them? The following example demonstrates usage of the DEC in determining the dependents of the given expression: typedef typename parser_t:: dependent_entity_collector::symbol_t symbol_t; std::string expression_string = "z := abs(x + sin(2 * pi / y))"; T x,y,z; parser_t parser; symbol_table_t symbol_table; symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); symbol_table.add_variable("z",z); expression_t expression; expression.register_symbol_table(symbol_table); //Collect only variable and function symbols parser.dec().collect_variables() = true; parser.dec().collect_functions() = true; if (!parser.compile(expression_string,expression)) { // error.... } std::deque<symbol_t> symbol_list; parser.dec().symbols(symbol_list); for (std::size_t i = 0; i < symbol_list.size(); ++i) { symbol_t& symbol = symbol_list[i]; switch (symbol.second) { case parser_t::e_st_variable : ... break; case parser_t::e_st_vector : ... break; case parser_t::e_st_string : ... break; case parser_t::e_st_function : ... break; } } Note: The 'symbol_t' type is a std::pair comprising of the symbol name (std::string) and the associated type of the symbol as denoted by the cases in the switch statement. Having particular symbols (variable or function) present in an expression is one form of dependency. Another and just as interesting and important type of dependency is that of assignments. Assignments are the set of dependent symbols that 'may' have their values modified within an expression. The following are example expressions and their associated assignments: Assignments Expression (1) x x := y + z (2) x, y x += y += z (3) x, y, z x := y += sin(z := w + 2) (4) z, w if (x > y, z := x + 2, w := 'A String') (5) None x + y + z Note: In expression 4, both variables 'z' and 'w' are denoted as being assignments even though only one of them can be modified at the time of evaluation. Furthermore the determination of which of the two variables the modification will occur upon can only be known with certainty at evaluation time and not beforehand, hence both are listed as being candidates for assignment. The following builds upon the previous example demonstrating the usage of the DEC in determining the 'assignments' of the given expression: //Collect assignments parser.dec().collect_assignments() = true; if (!parser.compile(expression_string,expression)) { // error.... } std::deque<symbol_t> symbol_list; parser.dec().assignment_symbols(symbol_list); for (std::size_t i = 0; i < symbol_list.size(); ++i) { symbol_t& symbol = symbol_list[i]; switch (symbol.second) { case parser_t::e_st_variable : ... break; case parser_t::e_st_vector : ... break; case parser_t::e_st_string : ... break; } } Note: The assignments will only consist of variable types and as such will not contain symbols denoting functions. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [17 - ENABLING AND DISABLING FEATURES] The parser can be configured via its settings instance to either allow or disallow certain features that are available within the ExprTk grammar. The features fall into one of the following six categories: (1) Base Functions (2) Control Flow Structures (3) Logical Operators (4) Arithmetic Operators (5) Inequality Operators (6) Assignment Operators (1) Base Functions The list of available base functions is as follows: abs, acos, acosh, asin, asinh, atan, atanh, atan2, avg, ceil, clamp, cos, cosh, cot, csc, equal, erf, erfc, exp, expm1, floor, frac, hypot, iclamp, like, log, log10, log2, logn, log1p, mand, max, min, mod, mor, mul, ncdf, pow, root, round, roundn, sec, sgn, sin, sinc, sinh, sqrt, sum, swap, tan, tanh, trunc, not_equal, inrange, deg2grad, deg2rad, rad2deg, grad2deg The above mentioned base functions can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; parser.settings().disable_all_base_functions(); parser .compile("2 * abs(2 - 3)",expression); // compilation failure parser.settings().enable_all_base_functions(); parser .compile("2 * abs(2 - 3)",expression); // compilation success One can also enable or disable specific base functions. The following example demonstrates the disabling of the trigonometric functions 'sin' and 'cos': parser_t parser; expression_t expression; parser.settings() .disable_base_function(settings_t::e_bf_sin) .disable_base_function(settings_t::e_bf_cos); parser .compile("(sin(x) / cos(x)) == tan(x)",expression); // failure parser.settings() .enable_base_function(settings_t::e_bf_sin) .enable_base_function(settings_t::e_bf_cos); parser .compile("(sin(x) / cos(x)) == tan(x)",expression); // success (2) Control Flow Structures The list of available control flow structures is as follows: (a) If or If-Else (b) Switch statement (c) For Loop (d) While Loop (e) Repeat Loop The above mentioned control flow structures can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; std::string program = " var x := 0; " " for (var i := 0; i < 10; i += 1) " " { " " x += i; " " } "; parser.settings().disable_all_control_structures(); parser .compile(program,expression); // compilation failure parser.settings().enable_all_control_structures(); parser .compile(program,expression); // compilation success One can also enable or disable specific control flow structures. The following example demonstrates the disabling of the for-loop control flow structure: parser_t parser; expression_t expression; std::string program = " var x := 0; " " for (var i := 0; i < 10; i += 1) " " { " " x += i; " " } "; parser.settings() .disable_control_structure(settings_t::e_ctrl_for_loop); parser .compile(program,expression); // failure parser.settings() .enable_control_structure(settings_t::e_ctrl_for_loop); parser .compile(program,expression); // success (3) Logical Operators The list of available logical operators is as follows: and, nand, nor, not, or, xnor, xor, &, | The above mentioned logical operators can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; parser.settings().disable_all_logic_ops(); parser .compile("1 or not(0 and 1)",expression); // compilation failure parser.settings().enable_all_logic_ops(); parser .compile("1 or not(0 and 1)",expression); // compilation success One can also enable or disable specific logical operators. The following example demonstrates the disabling of the 'and' logical operator: parser_t parser; expression_t expression; parser.settings() .disable_logic_operation(settings_t::e_logic_and); parser .compile("1 or not(0 and 1)",expression); // failure parser.settings() .enable_logic_operation(settings_t::e_logic_and); parser .compile("1 or not(0 and 1)",expression); // success (4) Arithmetic Operators The list of available arithmetic operators is as follows: +, -, *, /, %, ^ The above mentioned arithmetic operators can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; parser.settings().disable_all_arithmetic_ops(); parser .compile("1 + 2 / 3",expression); // compilation failure parser.settings().enable_all_arithmetic_ops(); parser .compile("1 + 2 / 3",expression); // compilation success One can also enable or disable specific arithmetic operators. The following example demonstrates the disabling of the addition '+' arithmetic operator: parser_t parser; expression_t expression; parser.settings() .disable_arithmetic_operation(settings_t::e_arith_add); parser .compile("1 + 2 / 3",expression); // failure parser.settings() .enable_arithmetic_operation(settings_t::e_arith_add); parser .compile("1 + 2 / 3",expression); // success (5) Inequality Operators The list of available inequality operators is as follows: <, <=, >, >=, ==, =, != <> The above mentioned inequality operators can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; parser.settings().disable_all_inequality_ops(); parser .compile("1 < 3",expression); // compilation failure parser.settings().enable_all_inequality_ops(); parser .compile("1 < 3",expression); // compilation success One can also enable or disable specific inequality operators. The following example demonstrates the disabling of the less-than '<' inequality operator: parser_t parser; expression_t expression; parser.settings() .disable_inequality_operation(settings_t::e_ineq_lt); parser .compile("1 < 3",expression); // failure parser.settings() .enable_inequality_operation(settings_t::e_ineq_lt); parser .compile("1 < 3",expression); // success (6) Assignment Operators The list of available assignment operators is as follows: :=, +=, -=, *=, /=, %= The above mentioned assignment operators can be either enabled or disabled 'all' at once, as is demonstrated below: parser_t parser; expression_t expression; symbol_table_t symbol_table; T x = T(0); symbol_table.add_variable("x",x); expression.register_symbol_table(symbol_table); parser.settings().disable_all_assignment_ops(); parser .compile("x := 3",expression); // compilation failure parser.settings().enable_all_assignment_ops(); parser .compile("x := 3",expression); // compilation success One can also enable or disable specific assignment operators. The following example demonstrates the disabling of the '+=' addition assignment operator: parser_t parser; expression_t expression; symbol_table_t symbol_table; T x = T(0); symbol_table.add_variable("x",x); expression.register_symbol_table(symbol_table); parser.settings() .disable_assignment_operation(settings_t::e_assign_addass); parser .compile("x += 3",expression); // failure parser.settings() .enable_assignment_operation(settings_t::e_assign_addass); parser .compile("x += 3",expression); // success Note: In the event of a base function being disabled, one can redefine the base function using the standard custom function definition process. In the following example the 'sin' function is disabled then redefined as a function taking degree input. template <typename T> struct sine_deg : public exprtk::ifunction<T> { sine_deg() : exprtk::ifunction<T>(1) {} inline T operator()(const T& v) { const T pi = exprtk::details::numeric::constant::pi; return std::sin((v * T(pi)) / T(180)); } }; . . . typedef exprtk::symbol_table<T> symbol_table_t; typedef exprtk::expression<T> expression_t; typedef exprtk::parser<T> parser_t; typedef typename parser_t::settings_store settings_t; sine_deg<T> sine; symbol_table.add_reserved_function("sin",sine); expression_t expression; expression.register_symbol_table(symbol_table); parser_t parser; parser.settings() .disable_base_function(settings_t::e_bf_sin); parser.compile("1 + sin(30)",expression); In the example above, the custom 'sin' function is registered with the symbol_table using the method 'add_reserved_function'. This is done so as to bypass the checks for reserved words that are carried out on the provided symbol names when calling the standard 'add_function' method. Normally if a user specified symbol name conflicts with any of the ExprTk reserved words, the add_function call will fail. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [18 - EXPRESSION RETURN VALUES] ExprTk expressions can return immediately from any point by utilizing the return call. Furthermore the return call can be used to transfer out multiple return values from within the expression. If an expression evaluation exits using a return point, the result of the call to the 'value' method will be NaN, and it's expected that the return values will be available from the results_context. In the following example there are three return points in the expression. If neither of the return points are hit, then the expression will return normally. std::string expression_string = " if (x < y) " " return [x + 1,'return-call 1']; " " else if (x > y) " " return [y / 2, y + 1, 'return-call 2']; " " else if (equal(x,y)) " " x + y; " " return [x, y, x + y, x - y, 'return-call 3'] "; typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; symbol_table_t symbol_table; expression_t expression; parser_t parser; double x = 0; double y = 0; symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); expression.register_symbol_table(symbol_table); parser.compile(expression_string,expression); T result = expression.value(); if (expression.results().count()) { typedef exprtk::results_context<T> results_context_t; typedef typename results_context_t::type_store_t type_t; typedef typename type_t::scalar_view scalar_t; typedef typename type_t::vector_view vector_t; typedef typename type_t::string_view string_t; const results_context_t& results = expression.results(); for (std::size_t i = 0; i < results.count(); ++i) { type_t t = results[i]; switch (t.type) { case type_t::e_scalar : ... break; case type_t::e_vector : ... break; case type_t::e_string : ... break; default : continue; } } Note: Processing of the return results is similar to that of the generic function call parameters. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [19 - COMPILATION ERRORS] When attempting to compile a malformed or otherwise erroneous ExprTk expression, the compilation process will result in an error, as is indicated by the 'compile' method returning a false value. A diagnostic indicating the first error encountered and its cause can be obtained by invoking the 'error' method, as is demonstrated in the following example: if (!parser.compile(expression_string,expression)) { printf("Error: %s\n", parser.error().c_str()); return false; } Any error(s) resulting from a failed compilation will be stored in the parser instance until the next time a compilation is performed. Before then errors can be enumerated in the order they occurred by invoking the 'get_error' method which itself will return a 'parser_error' type. A parser_error object will contain an error diagnostic, an error mode (or class), and the character position of the error in the expression string. The following example demonstrates the enumeration of error(s) in the event of a failed compilation. if (!parser.compile(expression_string,expression)) { for (std::size_t i = 0; i < parser.error_count(); ++i) { typedef exprtk::parser_error::type error_t; error_t error = parser.get_error(i); printf("Error[%02d] Position: %02d Type: [%14s] Msg: %s\n", i, error.token.position, exprtk::parser_error::to_str(error.mode).c_str(), error.diagnostic.c_str()); } return false; } Assuming the following expression '2 + (3 / log(1 + x))' which uses a variable named 'x' that has not been registered with the appropriate symbol_table instance and is not a locally defined variable, once compiled the above denoted post compilation error handling code shall produce the following output: Error: ERR184 - Undefined symbol: 'x' Error[00] Pos:17 Type:[Syntax] Msg: ERR184 - Undefined symbol: 'x' For expressions comprised of multiple lines, the error position provided in the parser_error object can be converted into a pair of line and column numbers by invoking the 'update_error' function as is demonstrated by the following example: if (!parser.compile(program_str,expression)) { for (std::size_t i = 0; i < parser.error_count(); ++i) { typedef exprtk::parser_error::type error_t; error_t error = parser.get_error(i); exprtk::parser_error::update_error(error,program_str); printf("Error[%02d] at line: %d column: %d\n", i, error.line_no, error.column_no); } return false; } Note: There are five distinct error modes in ExprTk which denote the class of an error. These classes are as follows: (a) Syntax (b) Token (c) Numeric (d) Symbol Table (e) Lexer (a) Syntax Errors These are errors related to invalid syntax found within the denoted expression. Examples are invalid sequences of operators and variables, incorrect number of parameters to functions, invalid conditional or loop structures and invalid use of keywords. eg: 'for := sin(x,y,z) + 2 * equal > until[2 - x,3]' (b) Token Errors Errors in this class relate to token level errors detected by one or more of the following checkers: (1) Bracket Checker (2) Numeric Checker (3) Sequence Checker (c) Numeric Errors This class of error is related to conversion of numeric values from their string form to the underlying numerical type (float, double etc). (d) Symbol Table Errors This is the class of errors related to failures when interacting with the registered symbol_table instance. Errors such as not being able to find, within the symbol_table, symbols representing variables or functions, to being unable to create new variables in the symbol_table via the 'unknown symbol resolver' mechanism. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [20 - EXPRTK NOTES] The following is a list of facts and suggestions one may want to take into account when using ExprTk: (00) Precision and performance of expression evaluations are the dominant principles of the ExprTk library. (01) ExprTk uses a rudimentary imperative programming model with syntax based on languages such as Pascal and C. Furthermore ExprTk is an LL(2) type grammar and is processed using a recursive descent parsing algorithm. (02) Supported types are float, double, long double and MPFR/GMP. (03) Standard mathematical operator precedence is applied (BEDMAS). (04) Results of expressions that are deemed as being 'valid' are to exist within the set of Real numbers. All other results will be of the value: Not-A-Number (NaN). (05) Supported user defined types are numeric and string variables, numeric vectors and functions. (06) All reserved words, keywords, variable, vector, string and function names are case-insensitive. (07) Variable, vector, string variable and function names must begin with a letter (A-Z or a-z), then can be comprised of any combination of letters, digits and underscores. (eg: x, var1 or power_func99) (08) Expression lengths and sub-expression lists are limited only by storage capacity. (09) The life-time of objects registered with or created from a specific symbol-table must span at least the life-time of the compiled expressions which utilize objects, such as variables, of that symbol-table, otherwise the result will be undefined behavior. (10) Equal and Nequal are normalised-epsilon equality routines, which use epsilons of 0.0000000001 and 0.000001 for double and float types respectively. (11) All trigonometric functions assume radian input unless stated otherwise. (12) Expressions may contain white-space characters such as space, tabs, new-lines, control-feed et al. ('\n', '\r', '\t', '\b', '\v', '\f') (13) Strings may be comprised of any combination of letters, digits special characters including (~!@#$%^&*()[]|=+ ,./?<>;:"`~_) or hexadecimal escaped sequences (eg: \0x30) and must be enclosed with single-quotes. eg: 'Frankly my dear, \0x49 do n0t give a damn!' (14) User defined normal functions can have up to 20 parameters, where as user defined generic-functions and vararg-functions can have an unlimited number of parameters. (15) The inbuilt polynomial functions can be at most of degree 12. (16) Where appropriate constant folding optimisations may be applied. (eg: The expression '2 + (3 - (x / y))' becomes '5 - (x / y)') (17) If the strength reduction compilation option has been enabled, then where applicable strength reduction optimisations may be applied. (18) String processing capabilities are available by default. To turn them off, the following needs to be defined at compile time: exprtk_disable_string_capabilities (19) Composited functions can call themselves or any other functions that have been defined prior to their own definition. (20) Recursive calls made from within composited functions will have a stack size bound by the stack of the executing architecture. (21) User defined functions by default are assumed to have side effects. As such an "all constant parameter" invocation of such functions wont result in constant folding. If the function has no side effects then that can be noted during the constructor of the ifunction allowing it to be constant folded where appropriate. (22) The entity relationship between symbol_table and an expression is many-to-many. However the intended 'typical' use-case where possible, is to have a single symbol table manage the variable and function requirements of multiple expressions. (23) The common use-case for an expression is to have it compiled only ONCE and then subsequently have it evaluated multiple times. An extremely inefficient and suboptimal approach would be to recompile an expression from its string form every time it requires evaluating. (24) It is strongly recommended that the return value of method invocations from the parser and symbol_table types be taken into account. Specifically the 'compile' method of the parser and the 'add_xxx' set of methods of the symbol_table as they denote either the success or failure state of the invoked call. Continued processing from a failed state without having first rectified the underlying issue will in turn result in further failures and undefined behaviours. (25) The following are examples of compliant floating point value representations: (1) 12345 (5) -123.456 (2) +123.456e+12 (6) 123.456E-12 (3) +012.045e+07 (7) .1234 (4) 123.456f (8) -321.654E+3L (26) Expressions may contain any of the following comment styles: (1) // .... \n (2) # .... \n (3) /* .... */ (27) The 'null' value type is a special non-zero type that incorporates specific semantics when undergoing operations with the standard numeric type. The following is a list of type and boolean results associated with the use of 'null': (1) null +,-,*,/,% x --> x (2) x +,-,*,/,% null --> x (3) null +,-,*,/,% null --> null (4) null == null --> true (5) null == x --> true (6) x == null --> true (7) x != null --> false (8) null != null --> false (9) null != x --> false (28) The following is a list of reserved words and symbols used by ExprTk. Attempting to add a variable or custom function to a symbol table using any of the reserved words will result in a failure. abs, acos, acosh, and, asin, asinh, atan, atan2, atanh, avg, break, case, ceil, clamp, continue, cosh, cos, cot, csc, default, deg2grad, deg2rad, else, equal, erfc, erf, exp, expm1, false, floor, for, frac, grad2deg, hypot, iclamp, if, ilike, in, inrange, in, like, log, log10, log1p, log2, logn, mand, max, min, mod, mor, mul, nand, ncdf, nor, not, not_equal, not, null, or, pow, rad2deg, repeat, return, root, roundn, round, sec, sgn, shl, shr, sinc, sinh, sin, sqrt, sum, swap, switch, tanh, tan, true, trunc, until, var, while, xnor, xor, xor (29) Every valid ExprTk statement is a "value returning" expression. Unlike some languages that limit the types of expressions that can be performed in certain situations, in ExprTk any valid expression can be used in any "value consuming" context. eg: var y := 3; for (var x := switch { case 1 : 7; case 2 : -1 + ~{var x{};}; default : y > 2 ? 3 : 4; }; x != while (y > 0) { y -= 1; }; x -= { if(min(x,y) < 2 * max(x,y)) x + 2; else x + y - 3; } ) { (x + y) / (x - y); } (30) For performance considerations, one should assume the actions of expression, symbol table and parser instance instantiation and destruction, and the expression compilation process itself to be of high latency. Hence none of them should be part of any performance critical code paths, and should instead occur entirely either before or after such code paths. (31) Before jumping in and using ExprTk, do take the time to peruse the documentation and all of the examples, both in the main and the extras distributions. Having an informed general view of what can and can't be done, and how something should be done with ExprTk, will likely result in a far more productive and enjoyable programming experience. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [21 - SIMPLE EXPRTK EXAMPLE] The following is a simple yet complete example demonstrating typical usage of the ExprTk Library. The example instantiates a symbol table object, adding to it three variables named x, y and z, and a custom user defined function, that accepts only two parameters, named myfunc. The example then proceeds to instantiate an expression object and register to it the symbol table instance. A parser is then instantiated, and the string representation of the expression and the expression object are passed to the parser's compile method for compilation. If an error occurred during compilation, the compile method will return false, leading to a series of error diagnostics being printed to stdout. Otherwise the newly compiled expression is evaluated by invoking the expression object's value method, and subsequently printing the result of the computation to stdout. --- snip --- #include <cstdio> #include <string> #include "exprtk.hpp" template <typename T> struct myfunc : public exprtk::ifunction<T> { myfunc() : exprtk::ifunction<T>(2) {} T operator()(const T& v1, const T& v2) { return T(1) + (v1 * v2) / T(3); } }; int main() { typedef exprtk::symbol_table<double> symbol_table_t; typedef exprtk::expression<double> expression_t; typedef exprtk::parser<double> parser_t; typedef exprtk::parser_error::type error_t; std::string expression_str = "z := 2 myfunc([4 + sin(x / pi)^3],y ^ 2)"; double x = 1.1; double y = 2.2; double z = 3.3; myfunc<double> mf; symbol_table_t symbol_table; symbol_table.add_constants(); symbol_table.add_variable("x",x); symbol_table.add_variable("y",y); symbol_table.add_variable("z",z); symbol_table.add_function("myfunc",mf); expression_t expression; expression.register_symbol_table(symbol_table); parser_t parser; if (!parser.compile(expression_str,expression)) { // A compilation error has occurred. Attempt to // print all errors to stdout. printf("Error: %s\tExpression: %s\n", parser.error().c_str(), expression_str.c_str()); for (std::size_t i = 0; i < parser.error_count(); ++i) { // Include the specific nature of each error // and its position in the expression string. error_t error = parser.get_error(i); printf("Error: %02d Position: %02d " "Type: [%s] " "Message: %s " "Expression: %s\n", static_cast<int>(i), static_cast<int>(error.token.position), exprtk::parser_error::to_str(error.mode).c_str(), error.diagnostic.c_str(), expression_str.c_str()); } return 1; } // Evaluate the expression and obtain its result. double result = expression.value(); printf("Result: %10.5f\n",result); return 0; } --- snip --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [22 - BUILD OPTIONS] When building ExprTk there are a number of defines that will enable or disable certain features and capabilities. The defines can either be part of a compiler command line switch or scoped around the include to the ExprTk header. The defines are as follows: (1) exprtk_enable_debugging (2) exprtk_disable_comments (3) exprtk_disable_break_continue (4) exprtk_disable_sc_andor (5) exprtk_disable_enhanced_features (6) exprtk_disable_string_capabilities (7) exprtk_disable_superscalar_unroll (1) exprtk_enable_debugging This define will enable printing of debug information to stdout during the compilation process. (2) exprtk_disable_comments This define will disable the ability for expressions to have comments. Expressions that have comments when parsed with a build that has this option, will result in a compilation failure. (3) exprtk_disable_break_continue This define will disable the loop-wise 'break' and 'continue' capabilities. Any expression that contains those keywords will result in a compilation failure. (4) exprtk_disable_sc_andor This define will disable the short-circuit '&' (and) and '|' (or) operators (5) exprtk_disable_enhanced_features This define will disable all enhanced features such as strength reduction and special function optimisations and expression specific type instantiations. This feature will reduce compilation times and binary sizes but will also result in massive performance degradation of expression evaluations. (6) exprtk_disable_string_capabilities This define will disable all string processing capabilities. Any expression that contains a string or string related syntax will result in a compilation failure. (7) exprtk_disable_superscalar_unroll This define will set the loop unroll batch size to 4 operations per loop instead of the default 8 operations. This define is used in operations that involve vectors and aggregations over vectors. When targeting non-superscalar architectures, it may be recommended to build using this particular option if efficiency of evaluations is of concern. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [23 - FILES] The source distribution of ExprTk is comprised of the following set of files: (00) Makefile (01) readme.txt (02) exprtk.hpp (03) exprtk_test.cpp (04) exprtk_benchmark.cpp (05) exprtk_simple_example_01.cpp (06) exprtk_simple_example_02.cpp (07) exprtk_simple_example_03.cpp (08) exprtk_simple_example_04.cpp (09) exprtk_simple_example_05.cpp (10) exprtk_simple_example_06.cpp (11) exprtk_simple_example_07.cpp (12) exprtk_simple_example_08.cpp (13) exprtk_simple_example_09.cpp (14) exprtk_simple_example_10.cpp (15) exprtk_simple_example_11.cpp (16) exprtk_simple_example_12.cpp (17) exprtk_simple_example_13.cpp (18) exprtk_simple_example_14.cpp (19) exprtk_simple_example_15.cpp (20) exprtk_simple_example_16.cpp (21) exprtk_simple_example_17.cpp ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [24 - LANGUAGE STRUCTURE] +-------------------------------------------------------------+ |00 - If Statement | | | | [if] ---> [(] ---> [condition] -+-> [,] -+ | | | | | | +---------------<---------------+ | | | | | | | | +------------------<------------------+ | | | | | | | +--> [consequent] ---> [,] ---> [alternative] ---> [)] | | | | | +--> [)] --+-> [{] ---> [expression*] ---> [}] --+ | | | | | | | +---------<----------+ | | +----<-----+ | | | | v | | +--> [consequent] --> [;] -{*}-> [else-statement] | | | +-------------------------------------------------------------+ |01 - Else Statement | | | | [else] -+-> [alternative] ---> [;] | | | | | +--> [{] ---> [expression*] ---> [}] | | | | | +--> [if-statement] | | | +-------------------------------------------------------------+ |02 - Ternary Statement | | | | [condition] ---> [?] ---> [consequent] ---> [:] --+ | | | | | +------------------------<------------------------+ | | | | | +--> [alternative] --> [;] | | | +-------------------------------------------------------------+ |03 - While Loop | | | | [while] ---> [(] ---> [condition] ---> [)] ---+ | | | | | +----------------------<----------------------+ | | | | | +--> [{] ---> [expression*] ---> [}] | | | +-------------------------------------------------------------+ |04 - Repeat Until Loop | | | | [repeat] ---> [expression*] ---+ | | | | | +--------------<---------------+ | | | | | +--> [until] ---> [(] ---> [condition] --->[)] | | | +-------------------------------------------------------------+ |05 - For Loop | | | | [for] ---> [(] -+-> [initialise expression] --+--+ | | | | | | | +------------->---------------+ v | | | | | +-----------------------<------------------------+ | | | | | +--> [;] -+-> [condition] -+-> [;] ---+ | | | | | | | +------->--------+ v | | | | | +------------------<---------+--------+ | | | | | | +--> [increment expression] -+-> [)] --+ | | | | | +------------------<-------------------+ | | | | | +--> [{] ---> [expression*] ---> [}] | | | +-------------------------------------------------------------+ |06 - Switch Statement | | | | [switch] ---> [{] ---+ | | | | | +---------<----------+-----------<-----------+ | | | | | | +--> [case] ---> [condition] ---> [:] ---+ | | | | | | | +-------------------<--------------------+ | | | | | | | +--> [consequent] ---> [;] --------->--------+ | | | | | | | | | | +--> [default] ---> [consequent] ---> [;] ---+ | | | | | | +---------------------<----------------------+ | | | | | +--> [}] | | | +-------------------------------------------------------------+ |07 - Multi Subexpression Statement | | | | +--------------<---------------+ | | | | | | [~] ---> [{\(] -+-> [expression] -+-> [;\,] ---+ | | | | | +----------------<----------------+ | | | | | +--> [}\)] | | | +-------------------------------------------------------------+ |08 - Multi Case-Consequent Statement | | | | [[*]] ---> [{] ---+ | | | | | +--------<--------+--------------<----------+ | | | | | | +--> [case] ---> [condition] ---> [:] ---+ | | | | | | | +-------------------<--------------------+ | | | | | | | +--> [consequent] ---> [;] ---+------>------+ | | | | | +--> [}] | | | +-------------------------------------------------------------+ |09 - Variable Definition Statement | | | | [var] ---> [symbol] -+-> [:=] -+-> [expression] -+-> [;] | | | | | | | | +-----> [{}] -->--+ | | | | | | +------------->-------------+ | | | +-------------------------------------------------------------+ |10 - Vector Definition Statement | | | | [var] ---> [symbol] ---> [[] ---> [constant] ---> []] --+ | | | | | +---------------------------<---------------------------+ | | | | | | +--------->---------+ | | | | | | | +--> [:=] ---> [{] -+-+-> [expression] -+-> [}] ---> [;] | | | | | | +--<--- [,] <-----+ | | | +-------------------------------------------------------------+ |11 - String Definition Statement | | | | [var] --> [symbol] --> [:=] --> [str-expression] ---> [;] | | | +-------------------------------------------------------------+ |12 - Range Statement | | | | +-------->--------+ | | | | | | [[] -+-> [expression] -+-> [:] -+-> [expression] -+--> []] | | | | | | +-------->--------+ | | | +-------------------------------------------------------------+ |13 - Return Statement | | | | [return] ---> [[] -+-> [expression] -+-> []] ---> [;] | | | | | | +--<--- [,] <-----+ | | | +-------------------------------------------------------------+
About
C++ Mathematical Expression Parsing And Evaluation Library
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- C++ 99.9%
- Makefile 0.1%