-
Notifications
You must be signed in to change notification settings - Fork 15
/
fp8_optimization.py
46 lines (38 loc) · 1.89 KB
/
fp8_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#based on ComfyUI's and MinusZoneAI's fp8_linear optimization
import torch
import torch.nn as nn
def fp8_linear_forward(cls, original_dtype, input):
weight_dtype = cls.weight.dtype
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
if len(input.shape) == 3:
if weight_dtype == torch.float8_e4m3fn:
inn = input.reshape(-1, input.shape[2]).to(torch.float8_e5m2)
else:
inn = input.reshape(-1, input.shape[2]).to(torch.float8_e4m3fn)
w = cls.weight.t()
scale_weight = torch.ones((1), device=input.device, dtype=torch.float32)
scale_input = scale_weight
bias = cls.bias.to(original_dtype) if cls.bias is not None else None
out_dtype = original_dtype
if bias is not None:
o = torch._scaled_mm(inn, w, out_dtype=out_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
else:
o = torch._scaled_mm(inn, w, out_dtype=out_dtype, scale_a=scale_input, scale_b=scale_weight)
if isinstance(o, tuple):
o = o[0]
return o.reshape((-1, input.shape[1], cls.weight.shape[0]))
else:
cls.to(original_dtype)
out = cls.original_forward(input.to(original_dtype))
cls.to(original_dtype)
return out
else:
return cls.original_forward(input)
def convert_fp8_linear(module, original_dtype, params_to_keep):
setattr(module, "fp8_matmul_enabled", True)
for name, module in module.named_modules():
if not any(keyword in name for keyword in params_to_keep):
if isinstance(module, nn.Linear):
original_forward = module.forward
setattr(module, "original_forward", original_forward)
setattr(module, "forward", lambda input, m=module: fp8_linear_forward(m, original_dtype, input))