forked from udacity/AIND-Isolation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
game_agent.py
522 lines (422 loc) · 18.3 KB
/
game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
"""This file contains all the classes you must complete for this project.
You can use the test cases in agent_test.py to help during development, and
augment the test suite with your own test cases to further test your code.
You must test your agent's strength against a set of agents with known
relative strength using tournament.py and include the results in your report.
"""
import random
prev_opp_move = 0
class Timeout(Exception):
"""Subclass base exception for code clarity."""
pass
def heuristic_weighted_score(game, player):
"""This is a simple weighted score heuristic as described in lecture
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
return float(15 * own_moves - 19 * opp_moves)
def heuristic_ratio_rem__score(game, player):
"""This heuristic keep changing the weight depending upon the remaining
moves.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
size = game.width * game.height
ratio = (1.3 * game.move_count) / size
return own_moves - ratio * opp_moves
def heuristic_weighted_score_div(game, player):
"""This heuristic uses division operator and remaining and size
to give a score.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
return (own_moves + game.move_count)/( game.height * game.width + opp_moves)
def heuristic_complex_score(game, player):
"""This heuristic uses different heuristics at different stage of game.
At start, it uses simple improve score given in lecture.
In middle, we use the div heuristic given above.
At the end, we check how many moves of opponent are being reduced.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
size = game.width * game.height
# Starting
if game.move_count < game.width:
return own_moves - opp_moves
# Middle
elif game.move_count < size * 0.70:
return (own_moves + game.move_count)/(size + opp_moves)
# Ending
else:
return own_moves - (game.move_count * opp_moves) / game.height
def heuristic_complex_score1(game, player):
"""This heuristic uses different heuristics at different stage of game.
At start, it uses simple improve score given in lecture.
In middle, we use the div heuristic given above.
At the end, we check how many moves of opponent are being reduced.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
size = game.width * game.height
# Starting
if game.move_count < game.width:
return own_moves
# Middle
elif game.move_count < size * 0.80:
return (own_moves + game.move_count)/(size + opp_moves)
# Ending
else:
return own_moves + (prev_opp_move - opp_moves)
def heuristic_complex_score3(game, player):
"""This heuristic uses different heuristics at different stage of game.
At start, it uses simple improve score given in lecture.
In middle, we use the div heuristic given above.
At the end, we check how many moves of opponent are being reduced.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
size = game.width * game.height
# Starting
if game.move_count < game.width:
return own_moves - opp_moves
# Middle
elif game.move_count < size * 0.70:
return (own_moves + game.move_count)/(size + opp_moves)
# Ending
else:
return own_moves - opp_moves ** ((game.move_count * 2) / size)
def custom_score(game, player, heuristic = heuristic_complex_score1):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
return heuristic(game, player)
class CustomPlayer:
"""Game-playing agent that chooses a move using your evaluation function
and a depth-limited minimax algorithm with alpha-beta pruning. You must
finish and test this player to make sure it properly uses minimax and
alpha-beta to return a good move before the search time limit expires.
Parameters
----------
search_depth : int (optional)
A strictly positive integer (i.e., 1, 2, 3,...) for the number of
layers in the game tree to explore for fixed-depth search. (i.e., a
depth of one (1) would only explore the immediate sucessors of the
current state.)
score_fn : callable (optional)
A function to use for heuristic evaluation of game states.
iterative : boolean (optional)
Flag indicating whether to perform fixed-depth search (False) or
iterative deepening search (True).
method : {'minimax', 'alphabeta'} (optional)
The name of the search method to use in get_move().
timeout : float (optional)
Time remaining (in milliseconds) when search is aborted. Should be a
positive value large enough to allow the function to return before the
timer expires.
"""
def __init__(self, search_depth=3, score_fn=custom_score,
iterative=True, method='minimax', timeout=10.):
self.search_depth = search_depth
self.iterative = iterative
self.score = score_fn
self.method = method
self.time_left = None
self.TIMER_THRESHOLD = timeout
def get_move(self, game, legal_moves, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
This function must perform iterative deepening if self.iterative=True,
and it must use the search method (minimax or alphabeta) corresponding
to the self.method value.
**********************************************************************
NOTE: If time_left < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
legal_moves : list<(int, int)>
A list containing legal moves. Moves are encoded as tuples of pairs
of ints defining the next (row, col) for the agent to occupy.
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
global prev_opp_move
prev_opp_move = len(game.get_legal_moves(game.get_opponent(self)))
self.time_left = time_left
if not legal_moves:
return (-1, -1)
# Returning random move incase of timeout
move = legal_moves[random.randint(0, len(legal_moves) - 1)]
score = float("-inf")
# Perform any required initializations, including selecting an initial
# move from the game board (i.e., an opening book), or returning
# immediately if there are no legal moves
try:
# The search method call (alpha beta or minimax) should happen in
# here in order to avoid timeout. The try/except block will
# automatically catch the exception raised by the search method
# when the timer gets close to expiring
if self.method == "alphabeta":
search_method = self.alphabeta
else:
search_method = self.minimax
if self.iterative:
self.search_depth = 1
while score is not float("inf"):
score, move = max(search_method(game, self.search_depth), (score, move))
self.search_depth += 1
else:
score, move = max(search_method(game, self.search_depth), (score, move))
except Timeout:
# Handle any actions required at timeout, if necessary
return move
# Return the best move from the last completed search iteration
return move
def minimax(self, game, depth, maximizing_player=True):
"""Implement the minimax search algorithm as described in the lectures.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if depth == 0:
return self.score(game, self), (-1, -1)
if maximizing_player is True:
eval_m_func = max
score = float("-inf")
else:
eval_m_func = min
score = float("inf")
best_move = (-1, -1)
for move in game.get_legal_moves():
cur_score, _ = self.minimax(game.forecast_move(move), depth - 1, not maximizing_player)
score, best_move = eval_m_func((score, best_move), (cur_score, move))
return score, best_move
def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf"), maximizing_player=True):
"""Implement minimax search with alpha-beta pruning as described in the
lectures.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if maximizing_player:
return self.max_value(game, depth, alpha, beta)
else:
return self.min_value(game, depth, alpha, beta)
def max_value(self, game, depth, alpha, beta):
"""Implement max search of alpha-beta. It is use for maximizing with
optimisation to prune nodes.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if depth == 0:
return self.score(game, self), (-1, -1)
best_score = float("-inf")
best_move = (-1, -1)
for move in game.get_legal_moves(self):
cur_score, _ = self.min_value(game.forecast_move(move), depth - 1, alpha, beta)
if cur_score > best_score:
best_score, best_move = cur_score, move
if alpha < best_score:
alpha = best_score
if best_score >= beta:
return best_score, best_move
return best_score, best_move
def min_value(self, game, depth, alpha, beta):
"""Implement min search of alpha-beta. It is use for minimising with
optimisation to prune nodes.
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
maximizing_player : bool
Flag indicating whether the current search depth corresponds to a
maximizing layer (True) or a minimizing layer (False)
Returns
-------
float
The score for the current search branch
tuple(int, int)
The best move for the current branch; (-1, -1) for no legal moves
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise Timeout()
if depth == 0:
return self.score(game, self), (-1, -1)
best_score = float("inf")
best_move = (-1, -1)
for move in game.get_legal_moves(game.get_opponent(self)):
cur_score, _ = self.max_value(game.forecast_move(move), depth - 1, alpha, beta)
if cur_score < best_score:
best_score, best_move = cur_score, move
if beta > best_score:
beta = best_score
best_score, best_move = min((best_score,best_move),(cur_score,move))
if best_score <= alpha:
return best_score, best_move
return best_score, best_move