Skip to content

kamleshjec/Roadmap-To-Learn-Generative-AI-In-2024

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 

Repository files navigation

Roadmap To Learn Generative AI In 2024

Prerequisites

1. Python Programming Language -1 Month

Python:

python-logo-master-v3-TM-flattened

  1. Complete Python Playlist In English: YouTube

  2. Complete Python Playlist In Hindi: YouTube

  3. Flask Playlist: YouTube

  4. Fast API Tutorials YouTube

2. Basic Machine Learning Natural Language Processing (Day 1 - Day 5) YouTube

  1. Why NLP?
  2. One hot Encoding, Bag Of Words,
  3. TFIDF
  4. Word2vec,AvgWord2vec

3. Basic Deep Learning Concepts (Day 1- Day 5) YouTube

  1. ANN - Working Of MultiLayered Neural Network
  2. Forward Propogation, Backward Propogation
  3. Activation Functions, Loss Functions
  4. Optimizers

4. Advanced NLP Concepts (Day 6 - Last Video) YouTube

  1. RNN, LSTM RNN
  2. GRU RNN
  3. Bidirection LSTM RNN
  4. Encoder Decoder, Attention is all you need ,Seq to Seq
  5. Transformers

5. Starting the Journey Towards Generative AI (GPT4,Mistral 7B, LLAMA, Hugging Face Open Source LLM Models,Google Palm Model)

image

  1. OpenAI YouTube YouTube

image

  1. Langchain Tutorials With Projects YouTube YouTube

  2. Chainlit YouTube

  3. Google Gemini YouTube

5. Vector Databases And Vector Stores

  1. ChromaDB
  2. FAISS vector database, which makes use of the Facebook AI Similarity Search (FAISS) library
  3. LanceDB vector database based on the Lance data format
  4. Cassandra DB For storing Vectors

6. Deployment Of LLM Projects

  1. AWS
  2. Azure
  3. LangSmith
  4. LangServe
  5. HuggingFace Spaces

iNeuron Free Community Generative Ai Series YouTube

image

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published