-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_builder.py
47 lines (44 loc) · 1.46 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Contains PyTorch model code to instantiate a TinyVGG model.
"""
import torch
from torch import nn
class TrashClassificationCNNModel(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv2d(input_shape, hidden_units,
kernel_size=3,
stride=1,
padding=1),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units,
kernel_size=3,
stride=1,
padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units,
kernel_size=3,
stride=1,
padding=1),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units,
kernel_size=3,
stride=1,
padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=hidden_units*28*28,
out_features=output_shape)
)
def forward(self, x):
x = self.block_1(x)
x = self.block_2(x)
x = self.classifier(x)
return x