forked from python/mypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
meet.py
769 lines (657 loc) · 33.3 KB
/
meet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
from mypy.ordered_dict import OrderedDict
from typing import List, Optional, Tuple, Callable
from mypy.join import (
is_similar_callables, combine_similar_callables, join_type_list, unpack_callback_protocol
)
from mypy.types import (
Type, AnyType, TypeVisitor, UnboundType, NoneType, TypeVarType, Instance, CallableType,
TupleType, TypedDictType, ErasedType, UnionType, PartialType, DeletedType,
UninhabitedType, TypeType, TypeOfAny, Overloaded, FunctionLike, LiteralType,
ProperType, get_proper_type, get_proper_types, TypeAliasType
)
from mypy.subtypes import is_equivalent, is_subtype, is_callable_compatible, is_proper_subtype
from mypy.erasetype import erase_type
from mypy.maptype import map_instance_to_supertype
from mypy.typeops import tuple_fallback, make_simplified_union, is_recursive_pair
from mypy import state
# TODO Describe this module.
def trivial_meet(s: Type, t: Type) -> ProperType:
"""Return one of types (expanded) if it is a subtype of other, otherwise bottom type."""
if is_subtype(s, t):
return get_proper_type(s)
elif is_subtype(t, s):
return get_proper_type(t)
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
def meet_types(s: Type, t: Type) -> ProperType:
"""Return the greatest lower bound of two types."""
if is_recursive_pair(s, t):
# This case can trigger an infinite recursion, general support for this will be
# tricky so we use a trivial meet (like for protocols).
return trivial_meet(s, t)
s = get_proper_type(s)
t = get_proper_type(t)
if isinstance(s, ErasedType):
return s
if isinstance(s, AnyType):
return t
if isinstance(s, UnionType) and not isinstance(t, UnionType):
s, t = t, s
return t.accept(TypeMeetVisitor(s))
def narrow_declared_type(declared: Type, narrowed: Type) -> Type:
"""Return the declared type narrowed down to another type."""
# TODO: check infinite recursion for aliases here.
declared = get_proper_type(declared)
narrowed = get_proper_type(narrowed)
if declared == narrowed:
return declared
if isinstance(declared, UnionType):
return make_simplified_union([narrow_declared_type(x, narrowed)
for x in declared.relevant_items()])
elif not is_overlapping_types(declared, narrowed,
prohibit_none_typevar_overlap=True):
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
elif isinstance(narrowed, UnionType):
return make_simplified_union([narrow_declared_type(declared, x)
for x in narrowed.relevant_items()])
elif isinstance(narrowed, AnyType):
return narrowed
elif isinstance(declared, TypeType) and isinstance(narrowed, TypeType):
return TypeType.make_normalized(narrow_declared_type(declared.item, narrowed.item))
elif isinstance(declared, (Instance, TupleType, TypeType, LiteralType)):
return meet_types(declared, narrowed)
elif isinstance(declared, TypedDictType) and isinstance(narrowed, Instance):
# Special case useful for selecting TypedDicts from unions using isinstance(x, dict).
if (narrowed.type.fullname == 'builtins.dict' and
all(isinstance(t, AnyType) for t in get_proper_types(narrowed.args))):
return declared
return meet_types(declared, narrowed)
return narrowed
def get_possible_variants(typ: Type) -> List[Type]:
"""This function takes any "Union-like" type and returns a list of the available "options".
Specifically, there are currently exactly three different types that can have
"variants" or are "union-like":
- Unions
- TypeVars with value restrictions
- Overloads
This function will return a list of each "option" present in those types.
If this function receives any other type, we return a list containing just that
original type. (E.g. pretend the type was contained within a singleton union).
The only exception is regular TypeVars: we return a list containing that TypeVar's
upper bound.
This function is useful primarily when checking to see if two types are overlapping:
the algorithm to check if two unions are overlapping is fundamentally the same as
the algorithm for checking if two overloads are overlapping.
Normalizing both kinds of types in the same way lets us reuse the same algorithm
for both.
"""
typ = get_proper_type(typ)
if isinstance(typ, TypeVarType):
if len(typ.values) > 0:
return typ.values
else:
return [typ.upper_bound]
elif isinstance(typ, UnionType):
return list(typ.items)
elif isinstance(typ, Overloaded):
# Note: doing 'return typ.items()' makes mypy
# infer a too-specific return type of List[CallableType]
return list(typ.items())
else:
return [typ]
def is_overlapping_types(left: Type,
right: Type,
ignore_promotions: bool = False,
prohibit_none_typevar_overlap: bool = False) -> bool:
"""Can a value of type 'left' also be of type 'right' or vice-versa?
If 'ignore_promotions' is True, we ignore promotions while checking for overlaps.
If 'prohibit_none_typevar_overlap' is True, we disallow None from overlapping with
TypeVars (in both strict-optional and non-strict-optional mode).
"""
left, right = get_proper_types((left, right))
def _is_overlapping_types(left: Type, right: Type) -> bool:
'''Encode the kind of overlapping check to perform.
This function mostly exists so we don't have to repeat keyword arguments everywhere.'''
return is_overlapping_types(
left, right,
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=prohibit_none_typevar_overlap)
# We should never encounter this type.
if isinstance(left, PartialType) or isinstance(right, PartialType):
assert False, "Unexpectedly encountered partial type"
# We should also never encounter these types, but it's possible a few
# have snuck through due to unrelated bugs. For now, we handle these
# in the same way we handle 'Any'.
#
# TODO: Replace these with an 'assert False' once we are more confident.
illegal_types = (UnboundType, ErasedType, DeletedType)
if isinstance(left, illegal_types) or isinstance(right, illegal_types):
return True
# 'Any' may or may not be overlapping with the other type
if isinstance(left, AnyType) or isinstance(right, AnyType):
return True
# When running under non-strict optional mode, simplify away types of
# the form 'Union[A, B, C, None]' into just 'Union[A, B, C]'.
if not state.strict_optional:
if isinstance(left, UnionType):
left = UnionType.make_union(left.relevant_items())
if isinstance(right, UnionType):
right = UnionType.make_union(right.relevant_items())
left, right = get_proper_types((left, right))
# We check for complete overlaps next as a general-purpose failsafe.
# If this check fails, we start checking to see if there exists a
# *partial* overlap between types.
#
# These checks will also handle the NoneType and UninhabitedType cases for us.
if (is_proper_subtype(left, right, ignore_promotions=ignore_promotions)
or is_proper_subtype(right, left, ignore_promotions=ignore_promotions)):
return True
# See the docstring for 'get_possible_variants' for more info on what the
# following lines are doing.
left_possible = get_possible_variants(left)
right_possible = get_possible_variants(right)
# We start by checking multi-variant types like Unions first. We also perform
# the same logic if either type happens to be a TypeVar.
#
# Handling the TypeVars now lets us simulate having them bind to the corresponding
# type -- if we deferred these checks, the "return-early" logic of the other
# checks will prevent us from detecting certain overlaps.
#
# If both types are singleton variants (and are not TypeVars), we've hit the base case:
# we skip these checks to avoid infinitely recursing.
def is_none_typevar_overlap(t1: Type, t2: Type) -> bool:
t1, t2 = get_proper_types((t1, t2))
return isinstance(t1, NoneType) and isinstance(t2, TypeVarType)
if prohibit_none_typevar_overlap:
if is_none_typevar_overlap(left, right) or is_none_typevar_overlap(right, left):
return False
if (len(left_possible) > 1 or len(right_possible) > 1
or isinstance(left, TypeVarType) or isinstance(right, TypeVarType)):
for l in left_possible:
for r in right_possible:
if _is_overlapping_types(l, r):
return True
return False
# Now that we've finished handling TypeVars, we're free to end early
# if one one of the types is None and we're running in strict-optional mode.
# (None only overlaps with None in strict-optional mode).
#
# We must perform this check after the TypeVar checks because
# a TypeVar could be bound to None, for example.
if state.strict_optional and isinstance(left, NoneType) != isinstance(right, NoneType):
return False
# Next, we handle single-variant types that may be inherently partially overlapping:
#
# - TypedDicts
# - Tuples
#
# If we cannot identify a partial overlap and end early, we degrade these two types
# into their 'Instance' fallbacks.
if isinstance(left, TypedDictType) and isinstance(right, TypedDictType):
return are_typed_dicts_overlapping(left, right, ignore_promotions=ignore_promotions)
elif typed_dict_mapping_pair(left, right):
# Overlaps between TypedDicts and Mappings require dedicated logic.
return typed_dict_mapping_overlap(left, right,
overlapping=_is_overlapping_types)
elif isinstance(left, TypedDictType):
left = left.fallback
elif isinstance(right, TypedDictType):
right = right.fallback
if is_tuple(left) and is_tuple(right):
return are_tuples_overlapping(left, right, ignore_promotions=ignore_promotions)
elif isinstance(left, TupleType):
left = tuple_fallback(left)
elif isinstance(right, TupleType):
right = tuple_fallback(right)
# Next, we handle single-variant types that cannot be inherently partially overlapping,
# but do require custom logic to inspect.
#
# As before, we degrade into 'Instance' whenever possible.
if isinstance(left, TypeType) and isinstance(right, TypeType):
return _is_overlapping_types(left.item, right.item)
def _type_object_overlap(left: Type, right: Type) -> bool:
"""Special cases for type object types overlaps."""
# TODO: these checks are a bit in gray area, adjust if they cause problems.
left, right = get_proper_types((left, right))
# 1. Type[C] vs Callable[..., C], where the latter is class object.
if isinstance(left, TypeType) and isinstance(right, CallableType) and right.is_type_obj():
return _is_overlapping_types(left.item, right.ret_type)
# 2. Type[C] vs Meta, where Meta is a metaclass for C.
if isinstance(left, TypeType) and isinstance(right, Instance):
if isinstance(left.item, Instance):
left_meta = left.item.type.metaclass_type
if left_meta is not None:
return _is_overlapping_types(left_meta, right)
# builtins.type (default metaclass) overlaps with all metaclasses
return right.type.has_base('builtins.type')
elif isinstance(left.item, AnyType):
return right.type.has_base('builtins.type')
# 3. Callable[..., C] vs Meta is considered below, when we switch to fallbacks.
return False
if isinstance(left, TypeType) or isinstance(right, TypeType):
return _type_object_overlap(left, right) or _type_object_overlap(right, left)
if isinstance(left, CallableType) and isinstance(right, CallableType):
return is_callable_compatible(left, right,
is_compat=_is_overlapping_types,
ignore_pos_arg_names=True,
allow_partial_overlap=True)
elif isinstance(left, CallableType):
left = left.fallback
elif isinstance(right, CallableType):
right = right.fallback
if isinstance(left, LiteralType) and isinstance(right, LiteralType):
if left.value == right.value:
# If values are the same, we still need to check if fallbacks are overlapping,
# this is done below.
left = left.fallback
right = right.fallback
else:
return False
elif isinstance(left, LiteralType):
left = left.fallback
elif isinstance(right, LiteralType):
right = right.fallback
# Finally, we handle the case where left and right are instances.
if isinstance(left, Instance) and isinstance(right, Instance):
# First we need to handle promotions and structural compatibility for instances
# that came as fallbacks, so simply call is_subtype() to avoid code duplication.
if (is_subtype(left, right, ignore_promotions=ignore_promotions)
or is_subtype(right, left, ignore_promotions=ignore_promotions)):
return True
# Two unrelated types cannot be partially overlapping: they're disjoint.
if left.type.has_base(right.type.fullname):
left = map_instance_to_supertype(left, right.type)
elif right.type.has_base(left.type.fullname):
right = map_instance_to_supertype(right, left.type)
else:
return False
if len(left.args) == len(right.args):
# Note: we don't really care about variance here, since the overlapping check
# is symmetric and since we want to return 'True' even for partial overlaps.
#
# For example, suppose we have two types Wrapper[Parent] and Wrapper[Child].
# It doesn't matter whether Wrapper is covariant or contravariant since
# either way, one of the two types will overlap with the other.
#
# Similarly, if Wrapper was invariant, the two types could still be partially
# overlapping -- what if Wrapper[Parent] happened to contain only instances of
# specifically Child?
#
# Or, to use a more concrete example, List[Union[A, B]] and List[Union[B, C]]
# would be considered partially overlapping since it's possible for both lists
# to contain only instances of B at runtime.
if all(_is_overlapping_types(left_arg, right_arg)
for left_arg, right_arg in zip(left.args, right.args)):
return True
return False
# We ought to have handled every case by now: we conclude the
# two types are not overlapping, either completely or partially.
#
# Note: it's unclear however, whether returning False is the right thing
# to do when inferring reachability -- see https://github.com/python/mypy/issues/5529
assert type(left) != type(right)
return False
def is_overlapping_erased_types(left: Type, right: Type, *,
ignore_promotions: bool = False) -> bool:
"""The same as 'is_overlapping_erased_types', except the types are erased first."""
return is_overlapping_types(erase_type(left), erase_type(right),
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=True)
def are_typed_dicts_overlapping(left: TypedDictType, right: TypedDictType, *,
ignore_promotions: bool = False,
prohibit_none_typevar_overlap: bool = False) -> bool:
"""Returns 'true' if left and right are overlapping TypeDictTypes."""
# All required keys in left are present and overlapping with something in right
for key in left.required_keys:
if key not in right.items:
return False
if not is_overlapping_types(left.items[key], right.items[key],
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=prohibit_none_typevar_overlap):
return False
# Repeat check in the other direction
for key in right.required_keys:
if key not in left.items:
return False
if not is_overlapping_types(left.items[key], right.items[key],
ignore_promotions=ignore_promotions):
return False
# The presence of any additional optional keys does not affect whether the two
# TypedDicts are partially overlapping: the dicts would be overlapping if the
# keys happened to be missing.
return True
def are_tuples_overlapping(left: Type, right: Type, *,
ignore_promotions: bool = False,
prohibit_none_typevar_overlap: bool = False) -> bool:
"""Returns true if left and right are overlapping tuples."""
left, right = get_proper_types((left, right))
left = adjust_tuple(left, right) or left
right = adjust_tuple(right, left) or right
assert isinstance(left, TupleType), 'Type {} is not a tuple'.format(left)
assert isinstance(right, TupleType), 'Type {} is not a tuple'.format(right)
if len(left.items) != len(right.items):
return False
return all(is_overlapping_types(l, r,
ignore_promotions=ignore_promotions,
prohibit_none_typevar_overlap=prohibit_none_typevar_overlap)
for l, r in zip(left.items, right.items))
def adjust_tuple(left: ProperType, r: ProperType) -> Optional[TupleType]:
"""Find out if `left` is a Tuple[A, ...], and adjust its length to `right`"""
if isinstance(left, Instance) and left.type.fullname == 'builtins.tuple':
n = r.length() if isinstance(r, TupleType) else 1
return TupleType([left.args[0]] * n, left)
return None
def is_tuple(typ: Type) -> bool:
typ = get_proper_type(typ)
return (isinstance(typ, TupleType)
or (isinstance(typ, Instance) and typ.type.fullname == 'builtins.tuple'))
class TypeMeetVisitor(TypeVisitor[ProperType]):
def __init__(self, s: ProperType) -> None:
self.s = s
def visit_unbound_type(self, t: UnboundType) -> ProperType:
if isinstance(self.s, NoneType):
if state.strict_optional:
return AnyType(TypeOfAny.special_form)
else:
return self.s
elif isinstance(self.s, UninhabitedType):
return self.s
else:
return AnyType(TypeOfAny.special_form)
def visit_any(self, t: AnyType) -> ProperType:
return self.s
def visit_union_type(self, t: UnionType) -> ProperType:
if isinstance(self.s, UnionType):
meets = [] # type: List[Type]
for x in t.items:
for y in self.s.items:
meets.append(meet_types(x, y))
else:
meets = [meet_types(x, self.s)
for x in t.items]
return make_simplified_union(meets)
def visit_none_type(self, t: NoneType) -> ProperType:
if state.strict_optional:
if isinstance(self.s, NoneType) or (isinstance(self.s, Instance) and
self.s.type.fullname == 'builtins.object'):
return t
else:
return UninhabitedType()
else:
return t
def visit_uninhabited_type(self, t: UninhabitedType) -> ProperType:
return t
def visit_deleted_type(self, t: DeletedType) -> ProperType:
if isinstance(self.s, NoneType):
if state.strict_optional:
return t
else:
return self.s
elif isinstance(self.s, UninhabitedType):
return self.s
else:
return t
def visit_erased_type(self, t: ErasedType) -> ProperType:
return self.s
def visit_type_var(self, t: TypeVarType) -> ProperType:
if isinstance(self.s, TypeVarType) and self.s.id == t.id:
return self.s
else:
return self.default(self.s)
def visit_instance(self, t: Instance) -> ProperType:
if isinstance(self.s, Instance):
si = self.s
if t.type == si.type:
if is_subtype(t, self.s) or is_subtype(self.s, t):
# Combine type arguments. We could have used join below
# equivalently.
args = [] # type: List[Type]
# N.B: We use zip instead of indexing because the lengths might have
# mismatches during daemon reprocessing.
for ta, sia in zip(t.args, si.args):
args.append(self.meet(ta, sia))
return Instance(t.type, args)
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
else:
if is_subtype(t, self.s):
return t
elif is_subtype(self.s, t):
# See also above comment.
return self.s
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
elif isinstance(self.s, FunctionLike) and t.type.is_protocol:
call = unpack_callback_protocol(t)
if call:
return meet_types(call, self.s)
elif isinstance(self.s, FunctionLike) and self.s.is_type_obj() and t.type.is_metaclass():
if is_subtype(self.s.fallback, t):
return self.s
return self.default(self.s)
elif isinstance(self.s, TypeType):
return meet_types(t, self.s)
elif isinstance(self.s, TupleType):
return meet_types(t, self.s)
elif isinstance(self.s, LiteralType):
return meet_types(t, self.s)
elif isinstance(self.s, TypedDictType):
return meet_types(t, self.s)
return self.default(self.s)
def visit_callable_type(self, t: CallableType) -> ProperType:
if isinstance(self.s, CallableType) and is_similar_callables(t, self.s):
if is_equivalent(t, self.s):
return combine_similar_callables(t, self.s)
result = meet_similar_callables(t, self.s)
# We set the from_type_type flag to suppress error when a collection of
# concrete class objects gets inferred as their common abstract superclass.
if not ((t.is_type_obj() and t.type_object().is_abstract) or
(self.s.is_type_obj() and self.s.type_object().is_abstract)):
result.from_type_type = True
if isinstance(get_proper_type(result.ret_type), UninhabitedType):
# Return a plain None or <uninhabited> instead of a weird function.
return self.default(self.s)
return result
elif isinstance(self.s, TypeType) and t.is_type_obj() and not t.is_generic():
# In this case we are able to potentially produce a better meet.
res = meet_types(self.s.item, t.ret_type)
if not isinstance(res, (NoneType, UninhabitedType)):
return TypeType.make_normalized(res)
return self.default(self.s)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = unpack_callback_protocol(self.s)
if call:
return meet_types(t, call)
return self.default(self.s)
def visit_overloaded(self, t: Overloaded) -> ProperType:
# TODO: Implement a better algorithm that covers at least the same cases
# as TypeJoinVisitor.visit_overloaded().
s = self.s
if isinstance(s, FunctionLike):
if s.items() == t.items():
return Overloaded(t.items())
elif is_subtype(s, t):
return s
elif is_subtype(t, s):
return t
else:
return meet_types(t.fallback, s.fallback)
elif isinstance(self.s, Instance) and self.s.type.is_protocol:
call = unpack_callback_protocol(self.s)
if call:
return meet_types(t, call)
return meet_types(t.fallback, s)
def visit_tuple_type(self, t: TupleType) -> ProperType:
if isinstance(self.s, TupleType) and self.s.length() == t.length():
items = [] # type: List[Type]
for i in range(t.length()):
items.append(self.meet(t.items[i], self.s.items[i]))
# TODO: What if the fallbacks are different?
return TupleType(items, tuple_fallback(t))
elif isinstance(self.s, Instance):
# meet(Tuple[t1, t2, <...>], Tuple[s, ...]) == Tuple[meet(t1, s), meet(t2, s), <...>].
if self.s.type.fullname == 'builtins.tuple' and self.s.args:
return t.copy_modified(items=[meet_types(it, self.s.args[0]) for it in t.items])
elif is_proper_subtype(t, self.s):
# A named tuple that inherits from a normal class
return t
return self.default(self.s)
def visit_typeddict_type(self, t: TypedDictType) -> ProperType:
if isinstance(self.s, TypedDictType):
for (name, l, r) in self.s.zip(t):
if (not is_equivalent(l, r) or
(name in t.required_keys) != (name in self.s.required_keys)):
return self.default(self.s)
item_list = [] # type: List[Tuple[str, Type]]
for (item_name, s_item_type, t_item_type) in self.s.zipall(t):
if s_item_type is not None:
item_list.append((item_name, s_item_type))
else:
# at least one of s_item_type and t_item_type is not None
assert t_item_type is not None
item_list.append((item_name, t_item_type))
items = OrderedDict(item_list)
mapping_value_type = join_type_list(list(items.values()))
fallback = self.s.create_anonymous_fallback(value_type=mapping_value_type)
required_keys = t.required_keys | self.s.required_keys
return TypedDictType(items, required_keys, fallback)
elif isinstance(self.s, Instance) and is_subtype(t, self.s):
return t
else:
return self.default(self.s)
def visit_literal_type(self, t: LiteralType) -> ProperType:
if isinstance(self.s, LiteralType) and self.s == t:
return t
elif isinstance(self.s, Instance) and is_subtype(t.fallback, self.s):
return t
else:
return self.default(self.s)
def visit_partial_type(self, t: PartialType) -> ProperType:
# We can't determine the meet of partial types. We should never get here.
assert False, 'Internal error'
def visit_type_type(self, t: TypeType) -> ProperType:
if isinstance(self.s, TypeType):
typ = self.meet(t.item, self.s.item)
if not isinstance(typ, NoneType):
typ = TypeType.make_normalized(typ, line=t.line)
return typ
elif isinstance(self.s, Instance) and self.s.type.fullname == 'builtins.type':
return t
elif isinstance(self.s, CallableType):
return self.meet(t, self.s)
else:
return self.default(self.s)
def visit_type_alias_type(self, t: TypeAliasType) -> ProperType:
assert False, "This should be never called, got {}".format(t)
def meet(self, s: Type, t: Type) -> ProperType:
return meet_types(s, t)
def default(self, typ: Type) -> ProperType:
if isinstance(typ, UnboundType):
return AnyType(TypeOfAny.special_form)
else:
if state.strict_optional:
return UninhabitedType()
else:
return NoneType()
def meet_similar_callables(t: CallableType, s: CallableType) -> CallableType:
from mypy.join import join_types
arg_types = [] # type: List[Type]
for i in range(len(t.arg_types)):
arg_types.append(join_types(t.arg_types[i], s.arg_types[i]))
# TODO in combine_similar_callables also applies here (names and kinds)
# The fallback type can be either 'function' or 'type'. The result should have 'function' as
# fallback only if both operands have it as 'function'.
if t.fallback.type.fullname != 'builtins.function':
fallback = t.fallback
else:
fallback = s.fallback
return t.copy_modified(arg_types=arg_types,
ret_type=meet_types(t.ret_type, s.ret_type),
fallback=fallback,
name=None)
def meet_type_list(types: List[Type]) -> Type:
if not types:
# This should probably be builtins.object but that is hard to get and
# it doesn't matter for any current users.
return AnyType(TypeOfAny.implementation_artifact)
met = types[0]
for t in types[1:]:
met = meet_types(met, t)
return met
def typed_dict_mapping_pair(left: Type, right: Type) -> bool:
"""Is this a pair where one type is a TypedDict and another one is an instance of Mapping?
This case requires a precise/principled consideration because there are two use cases
that push the boundary the opposite ways: we need to avoid spurious overlaps to avoid
false positives for overloads, but we also need to avoid spuriously non-overlapping types
to avoid false positives with --strict-equality.
"""
left, right = get_proper_types((left, right))
assert not isinstance(left, TypedDictType) or not isinstance(right, TypedDictType)
if isinstance(left, TypedDictType):
_, other = left, right
elif isinstance(right, TypedDictType):
_, other = right, left
else:
return False
return isinstance(other, Instance) and other.type.has_base('typing.Mapping')
def typed_dict_mapping_overlap(left: Type, right: Type,
overlapping: Callable[[Type, Type], bool]) -> bool:
"""Check if a TypedDict type is overlapping with a Mapping.
The basic logic here consists of two rules:
* A TypedDict with some required keys is overlapping with Mapping[str, <some type>]
if and only if every key type is overlapping with <some type>. For example:
- TypedDict(x=int, y=str) overlaps with Dict[str, Union[str, int]]
- TypedDict(x=int, y=str) doesn't overlap with Dict[str, int]
Note that any additional non-required keys can't change the above result.
* A TypedDict with no required keys overlaps with Mapping[str, <some type>] if and
only if at least one of key types overlaps with <some type>. For example:
- TypedDict(x=str, y=str, total=False) overlaps with Dict[str, str]
- TypedDict(x=str, y=str, total=False) doesn't overlap with Dict[str, int]
- TypedDict(x=int, y=str, total=False) overlaps with Dict[str, str]
As usual empty, dictionaries lie in a gray area. In general, List[str] and List[str]
are considered non-overlapping despite empty list belongs to both. However, List[int]
and List[<nothing>] are considered overlapping.
So here we follow the same logic: a TypedDict with no required keys is considered
non-overlapping with Mapping[str, <some type>], but is considered overlapping with
Mapping[<nothing>, <nothing>]. This way we avoid false positives for overloads, and also
avoid false positives for comparisons like SomeTypedDict == {} under --strict-equality.
"""
left, right = get_proper_types((left, right))
assert not isinstance(left, TypedDictType) or not isinstance(right, TypedDictType)
if isinstance(left, TypedDictType):
assert isinstance(right, Instance)
typed, other = left, right
else:
assert isinstance(left, Instance)
assert isinstance(right, TypedDictType)
typed, other = right, left
mapping = next(base for base in other.type.mro if base.fullname == 'typing.Mapping')
other = map_instance_to_supertype(other, mapping)
key_type, value_type = get_proper_types(other.args)
# TODO: is there a cleaner way to get str_type here?
fallback = typed.as_anonymous().fallback
str_type = fallback.type.bases[0].args[0] # typing._TypedDict inherits Mapping[str, object]
# Special case: a TypedDict with no required keys overlaps with an empty dict.
if isinstance(key_type, UninhabitedType) and isinstance(value_type, UninhabitedType):
return not typed.required_keys
if typed.required_keys:
if not overlapping(key_type, str_type):
return False
return all(overlapping(typed.items[k], value_type) for k in typed.required_keys)
else:
if not overlapping(key_type, str_type):
return False
non_required = set(typed.items.keys()) - typed.required_keys
return any(overlapping(typed.items[k], value_type) for k in non_required)