forked from zcaicaros/L2D
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmb_agg.py
92 lines (83 loc) · 3.72 KB
/
mb_agg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import torch
def aggr_obs(obs_mb, n_node):
# obs_mb is [m, n_nodes_each_state, fea_dim], m is number of nodes in batch
idxs = obs_mb.coalesce().indices()
vals = obs_mb.coalesce().values()
new_idx_row = idxs[1] + idxs[0] * n_node
new_idx_col = idxs[2] + idxs[0] * n_node
idx_mb = torch.stack((new_idx_row, new_idx_col))
# print(idx_mb)
# print(obs_mb.shape[0])
adj_batch = torch.sparse.FloatTensor(indices=idx_mb,
values=vals,
size=torch.Size([obs_mb.shape[0] * n_node,
obs_mb.shape[0] * n_node]),
).to(obs_mb.device)
return adj_batch
def g_pool_cal(graph_pool_type, batch_size, n_nodes, device):
# batch_size is the shape of batch
# for graph pool sparse matrix
if graph_pool_type == 'average':
elem = torch.full(size=(batch_size[0]*n_nodes, 1),
fill_value=1 / n_nodes,
dtype=torch.float32,
device=device).view(-1)
else:
elem = torch.full(size=(batch_size[0] * n_nodes, 1),
fill_value=1,
dtype=torch.float32,
device=device).view(-1)
idx_0 = torch.arange(start=0, end=batch_size[0],
device=device,
dtype=torch.long)
# print(idx_0)
idx_0 = idx_0.repeat(n_nodes, 1).t().reshape((batch_size[0]*n_nodes, 1)).squeeze()
idx_1 = torch.arange(start=0, end=n_nodes*batch_size[0],
device=device,
dtype=torch.long)
idx = torch.stack((idx_0, idx_1))
graph_pool = torch.sparse.FloatTensor(idx, elem,
torch.Size([batch_size[0],
n_nodes*batch_size[0]])
).to(device)
return graph_pool
'''
def aggr_obs(obs_mb, n_node):
# obs_mb is [m, n_nodes_each_state, fea_dim], m is number of nodes in batch
# if obs is padded
# print(batch_obs[0])
mb_size = obs_mb.shape
if mb_size[-1] == 3:
n_sample_in_batch = mb_size[0]
# print(n_sample_in_batch)
tensor_temp = torch.arange(start=0,
end=n_sample_in_batch,
dtype=torch.long,
device=obs_mb.device).t().unsqueeze(dim=1)
# print(tensor_temp)
tensor_temp = tensor_temp.expand(-1, mb_size[-1])
# print(tensor_temp)
tensor_temp = tensor_temp.repeat(n_node, 1)
# print(tensor_temp)
tensor_temp = tensor_temp.sort(dim=0)[0]
# print(tensor_temp)
tensor_temp = tensor_temp * n_node
return obs_mb.view(-1, mb_size[-1]) + tensor_temp
# if obs is adj
else:
idxs = obs_mb.coalesce().indices()
vals = obs_mb.coalesce().values()
new_idx_row = idxs[1] + idxs[0] * n_node
new_idx_col = idxs[2] + idxs[0] * n_node
idx_mb = torch.stack((new_idx_row, new_idx_col))
# print(idx_mb)
# print(obs_mb.shape[0])
adj_batch = torch.sparse.FloatTensor(indices=idx_mb,
values=vals,
size=torch.Size([obs_mb.shape[0] * n_node,
obs_mb.shape[0] * n_node]),
).to(obs_mb.device)
return adj_batch
'''
if __name__ == '__main__':
print('Go home.')