-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_depth_estimation.py
58 lines (44 loc) · 1.47 KB
/
video_depth_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2
import pafy
import numpy as np
import glob
from mobilestereonet import MobileStereoNet, CameraConfig
from mobilestereonet.utils import draw_depth
# Initialize video
# cap = cv2.VideoCapture("video.mp4")
videoUrl = 'https://youtu.be/Yui48w71SG0'
videoPafy = pafy.new(videoUrl)
print(videoPafy.streams)
cap = cv2.VideoCapture(videoPafy.getbestvideo().url)
model_path = "models/model_float32.tflite"
# Store baseline (m) and focal length (pixel)
input_width = 320
camera_config = CameraConfig(0.1, 0.5*input_width) # 90 deg. FOV
max_distance = 5
# Initialize model
mobile_depth_estimator = MobileStereoNet(model_path, camera_config)
cv2.namedWindow("Estimated depth", cv2.WINDOW_NORMAL)
while cap.isOpened():
try:
# Read frame from the video
ret, frame = cap.read()
if not ret:
break
except:
continue
# Extract the left and right images
left_img = frame[:,:frame.shape[1]//3]
right_img = frame[:,frame.shape[1]//3:frame.shape[1]*2//3]
color_real_depth = frame[:,frame.shape[1]*2//3:]
# Estimate the depth
disparity_map = mobile_depth_estimator(left_img, right_img)
depth_map = mobile_depth_estimator.get_depth()
color_depth = draw_depth(depth_map, max_distance)
color_depth = cv2.resize(color_depth, (left_img.shape[1],left_img.shape[0]))
cobined_image = np.hstack((left_img,color_real_depth, color_depth))
cv2.imshow("Estimated depth", cobined_image)
# Press key q to stop
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()