-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLR.py
265 lines (208 loc) · 9.11 KB
/
LR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
This script is on learning a Linear Regression model.
Before writing up our own algorithms, it made sense to use the pre-existing algorithms from libraries such as sklearn.
This provides a baseline for the performance of LR on our dataset to match.
Preliminary Considerations
There were many considerations to be made. The first regarding hyper-parameters and high-dimensional data.
It was vital to not overthink the first few steps.
"""
from sklearn.model_selection import train_test_split
import pandas as pd
from auxiliary.data_clean2 import clean_data
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score
# Open Dataset
data = pd.read_csv('dataset/GSMArena_dataset_2020.csv', index_col=0)
# Some Insight
# data.info()
# data.head()
# NOTE: conflicting features 'main_camera_dual', 'comms_nfc', 'battery_charging', 'selfie_camera_video' resulting in
# many null cols.
data_features = data[
["oem", "launch_announced", "launch_status", "body_dimensions", "display_size", "comms_wlan", "comms_usb",
"features_sensors", "platform_os", "platform_cpu", "platform_gpu", "memory_internal",
"main_camera_single", "main_camera_video", "misc_price",
"selfie_camera_video",
"selfie_camera_single", "battery"]]
df = clean_data(data_features)
df.dropna(inplace=True)
df.reset_index(drop=True)
# Now its time to split the data
y = df["misc_price"]
X = df.drop(["key_index", "misc_price", "rom", "selfie_camera_video"], axis=1)
# Train & test split. 70-30 split for the preliminary split.
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=120, test_size=.3)
"""
Baseline performance of sklearn algorithms.
"""
lr_model = LinearRegression()
# Batch-train LR
lr_model.fit(X_train, y_train)
# Test the model & retrieve predictions
y_pred = lr_model.predict(X_test)
print("r2 score: ", r2_score(y_test, y_pred))
print("MSE: ", mean_squared_error(y_test, y_pred))
print("\n")
# Test categorical data only
X = X.drop(["body_dimensions", "screen_size", "scn_bdy_ratio", "clock_speed", "battery"], axis=1)
# Categorical input/ouput
X_trainC, X_testC, y_trainC, y_testC = train_test_split(
X, y, random_state=120, test_size=.3)
lr_model.fit(X_trainC, y_trainC)
y_predC = lr_model.predict(X_testC)
print("r2 score (Categorical Input): ", r2_score(y_testC, y_predC))
print("MSE (Categorical Input): ", mean_squared_error(y_testC, y_predC))
print("\n")
"""
Investigating Linear Regression in more detail.
Now we investigate LR in more depth by learning our own models and regularizing.
"""
# Set up class & method defs for LR batch
class LinReg:
"""
A streamlined linear regression object for batch learning.
"""
def __init__(self, epochs=1000, n_features=20):
self.theta_pred = 0
self.epochs = epochs
self.n_features = n_features
self.t0 = 5
self.t1 = 50
self.weights = []
def learn_rate(self, t):
return self.t0 / (t + self.t1)
def fit_batch(self, X, y):
"""
Use the normal eq. to find the weights. Note high computational complexity so not optimal
for use on complete dataset.
"""
self.theta_pred = \
np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
def fit_stochastic(self, X, y):
"""
Stochastic gradient descent.
NOTE1. a bit of 'boiler-plate' code in gradient descent, should probably specify a 'gradient_desc' method
and have 'L1' & 'L2' options instead.
"""
# initialize random weights according to gaussian distr.
self.weights = np.random.randn(self.n_features, 1)
prev_weights = self.weights
n = X.shape[0]
# Ref: 'Hands on Machine Learning ..' Gueron. (p 127) for general stochastic grad. descent algorithm.
for epoch in range(self.epochs):
for i in range(n):
rand_index = np.random.randint(n)
x_i = X[rand_index:rand_index + 1]
y_i = y[rand_index:rand_index + 1]
grad = 2 * x_i.T.dot(x_i.dot(self.weights) - y_i)
self.weights += -self.learn_rate(epoch * n + i) * grad
# conditional end
if epoch > 1 and np.linalg.norm(np.abs(self.weights - prev_weights)) < 10:
return
prev_weights = self.weights
def L1_fit(self, X, y, lmb=1, cond_end=10):
"""
Fit according to Lasso regression. NOTE: uses self.weights.
"""
# new objective function -> argmin(y-Xw)^T(y-Xw) + lmb*L1Norm(w)
self.weights = np.random.randn(self.n_features, 1)
prev_weights = self.weights
n = X.shape[0]
for epoch in range(self.epochs):
for i in range(n):
rand_index = np.random.randint(n)
x_i = X[rand_index:rand_index + 1]
y_i = y[rand_index:rand_index + 1]
grad = 2 * x_i.T.dot(x_i.dot(self.theta_pred) - y_i)
penalty = lmb * np.linalg.norm(self.theta_pred, ord=1)
self.weights += -self.learn_rate(epoch * n + i) * grad + [self.weights.shape[0]*[penalty]]
# conditional end
if epoch > 1 and np.linalg.norm(np.abs(self.weights - prev_weights)) < cond_end:
return
prev_weights = self.weights
def L2_fit(self, X, y, lmb=1, closed_form=True, cond_end=10):
"""
Fit according to Ridge regression.
"""
if closed_form:
S1 = np.linalg.inv(X.T.dot(X) + lmb * np.identity())
S2 = X.T.dot(y)
self.theta_pred = S1.dot(S2)
else:
# objective function -> argmin(y-Xw)^T(y-Xw) + lmb*L2Norm(w)**2. ref slides (1).
self.weights = np.random.randn(self.n_features, 1)
prev_weights = self.weights
n = X.shape[0]
for epoch in range(self.epochs):
for i in range(n):
rand_index = np.random.randint(n)
x_i = X[rand_index:rand_index + 1]
y_i = y[rand_index:rand_index + 1]
grad = 2 * x_i.T.dot(x_i.dot(self.weights) - y_i)
penalty = lmb * (np.linalg.norm(self.weights, ord=2) ** 2)
self.weights += -self.learn_rate(epoch * n + i) * grad + [self.weights.shape[0]*[penalty]]
# conditional end if |w*(i+1) - w*(i)| changes less than an arbitary value, say 10.
if epoch > 1 and np.linalg.norm(np.abs(self.weights - prev_weights)) < cond_end:
return
prev_weights = self.weights
def predict_batch(self, X):
"""
For batch fit & closed form L2.
"""
return X.dot(self.theta_pred)
def predict_stochastic(self, X):
"""
For gradient descent, stochastic, L1, L2.
"""
return X.dot(self.weights)
def performance(self, y_test, y_pred, batch=True):
print('Coefficients: \n', self.theta_pred if batch else self.weights)
print('Mean squared error: %.2f'
% mean_squared_error(y_test, y_pred))
print('Coefficient of determination: %.2f'
% r2_score(y_test, y_pred))
def plot(self, X, y, batch=True):
plt.figure()
plt.plot(X, y)
plt.figure()
plt.plot(self.theta_pred if batch else self.weights)
# Train LinReg Batch
lin_reg = LinReg(n_features=X_train.shape[1])
lin_reg.fit_batch(X_train, y_train)
y_pred = lin_reg.predict_batch(X_test)
lin_reg.performance(y_test, y_pred)
# # Perform 4-fold cross-validation on the datasets
# kf_4 = KFold(n_splits=4, shuffle=True)
# kf_4.get_n_splits(X)
# for train, test in kf_4.split(X):
# lin_reg.fit_batch(X[train], y[train])
# y_pred = lin_reg.predict(X[test])
# print(lin_reg.performance(y[test], y_pred))
# # Perform 10-fold cross-validation on the datasets
# kf_10 = KFold(n_splits=10, shuffle=True)
# kf_10.get_n_splits(X)
# for train, test in kf_10.split(X):
# lin_reg.fit_stochastic(X[train], y[train])
# y_pred = lin_reg.predict(X[test])
# print(lin_reg.performance(y[test], y_pred))
# Regularize with L1:
# lin_reg.L1_fit(X_train, y_train)
# y_pred = lin_reg.predict_stochastic(X_test)
# lin_reg.performance(y_test, y_pred)
#
# # Regularize with L2
# lin_reg.L2_fit(X_train, y_train, closed_form=False)
# y_pred = lin_reg.predict_stochastic(X_test)
# lin_reg.performance(y_test, y_pred)
#
# Plot the coefficients (vector), and plot each L1, L2, & batch-normal equation accuracy.
# Plot accuracy of L1 & L2 over epochs = 100,200,300,400,500...1000,5000.
#
# plt.plot(lin_reg.theta_pred)
# plt.plot(lin_reg.weights)
# train l1_reg over 100,200...5000 epochs & store performance1
# train l1_reg over 100,200...5000 epochs & store performance2
# plot performance1 & performance2 on same figure