-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
test_seq_parallel_attention.py
159 lines (125 loc) · 4.69 KB
/
test_seq_parallel_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import colossalai
import torch
import torch.distributed as dist
from colossalai.testing import spawn
from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward
from opensora.acceleration.parallel_states import set_sequence_parallel_group
from opensora.models.layers.blocks import (
Attention,
MultiHeadCrossAttention,
SeqParallelAttention,
SeqParallelMultiHeadCrossAttention,
)
def run_attention(rank, world_size):
# create model
torch.manual_seed(1024)
set_sequence_parallel_group(dist.group.WORLD)
seq_parallel_attention = SeqParallelAttention(dim=256, num_heads=4, qkv_bias=True, enable_flash_attn=False).cuda()
torch.manual_seed(1024)
attention = Attention(
dim=256,
num_heads=4,
qkv_bias=True,
enable_flash_attn=False,
).cuda()
# create inputs
torch.manual_seed(1024)
x = torch.randn(4, 64, 256).cuda()
seq_x = x.clone().detach()
x.requires_grad = True
x.retain_grad()
seq_x.requires_grad = True
seq_x.retain_grad()
sub_seq_x = split_forward_gather_backward(seq_x, dist.group.WORLD, dim=1, grad_scale="down")
# run model
out = attention(x)
sub_seq_out = seq_parallel_attention(sub_seq_x)
seq_out = gather_forward_split_backward(sub_seq_out, dist.group.WORLD, dim=1, grad_scale="up")
assert torch.allclose(seq_out, out, atol=1e-7), f"{seq_out}\nvs\n{out}"
# run backward
seq_out.mean().backward()
out.mean().backward()
# all reduce gradient for sp
for p in seq_parallel_attention.parameters():
if p.grad is not None:
dist.all_reduce(p.grad, group=dist.group.WORLD)
p.grad.div_(world_size)
# check grad
for p1, p2 in zip(seq_parallel_attention.parameters(), attention.parameters()):
assert torch.allclose(p1.grad, p2.grad, atol=1e-7), f"{p1.grad}\nvs\n{p2.grad}"
# check input grad
assert torch.allclose(x.grad, seq_x.grad, atol=1e-7), f"{x.grad}\nvs\n{seq_x.grad}"
def run_cross_attention(rank, world_size):
# create model
torch.manual_seed(1024)
set_sequence_parallel_group(dist.group.WORLD)
seq_parallel_attention = (
SeqParallelMultiHeadCrossAttention(
d_model=256,
num_heads=4,
)
.cuda()
.to(torch.bfloat16)
)
torch.manual_seed(1024)
attention = (
MultiHeadCrossAttention(
d_model=256,
num_heads=4,
)
.cuda()
.to(torch.bfloat16)
)
# make sure the weights are the same
for p1, p2 in zip(seq_parallel_attention.parameters(), attention.parameters()):
p1.data.copy_(p2.data)
# create inputs
torch.manual_seed(1024)
x = torch.randn(4, 64, 256).cuda().to(torch.bfloat16)
y = torch.randn(4, 32, 256).cuda().to(torch.bfloat16)
mask = [2, 10, 8, 16]
mask = None
seq_x = x.clone().detach()
seq_y = y.clone().detach()
# set grad
x.requires_grad = True
x.retain_grad()
seq_x.requires_grad = True
seq_x.retain_grad()
y.requires_grad = True
y.retain_grad()
seq_y.requires_grad = True
seq_y.retain_grad()
# split by sequence
sub_seq_x = split_forward_gather_backward(seq_x, dist.group.WORLD, dim=1, grad_scale="down")
# run model
out = attention(x, y, mask)
sub_seq_out = seq_parallel_attention(sub_seq_x, seq_y, mask)
seq_out = gather_forward_split_backward(sub_seq_out, dist.group.WORLD, dim=1, grad_scale="up")
assert torch.allclose(seq_out, out, rtol=1e-5, atol=1e-6), f"\n{seq_out}\nvs\n{out}"
# run backward
seq_out.mean().backward()
out.mean().backward()
# all reduce gradient for sp
for name, p in seq_parallel_attention.named_parameters():
if p.grad is not None:
dist.all_reduce(p.grad, group=dist.group.WORLD)
p.grad.div_(world_size)
else:
print(f"grad of {name} is None")
# # check grad
for p1, p2 in zip(seq_parallel_attention.named_parameters(), attention.named_parameters()):
assert torch.allclose(
p1[1].grad, p2[1].grad, rtol=1e-3, atol=1e-4
), f"\n{p1[0]}\nvs\n{p2[0]}:\n{p1[1].grad}\nvs\n{p2[1].grad}"
# # check input grad
assert torch.allclose(x.grad, seq_x.grad, atol=1e-7), f"{x.grad}\nvs\n{seq_x.grad}"
assert torch.allclose(y.grad, seq_y.grad, atol=1e-7), f"{y.grad}\nvs\n{seq_y.grad}"
def run_dist(rank, world_size, port):
colossalai.launch({}, rank=rank, world_size=world_size, host="localhost", port=port)
# run_attention(rank, world_size)
run_cross_attention(rank, world_size)
def test_seq_parallel_attention():
spawn(run_dist, nprocs=2)
if __name__ == "__main__":
test_seq_parallel_attention()