-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmes2way.m
1226 lines (1166 loc) · 49.5 KB
/
mes2way.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function [stats,varargout]=mes2way(X,group,esm,varargin)
% ** function [stats,varargout]=mes2way(X,group,esm,varargin)
% computes measures of effect size for samples in a factorial two-way
% design and places the results in output structure stats. A summary table
% including the effect size measures and two-way ANOVA results will be
% displayed in the command window. All input parameters except X, group and
% esm are optional and must be specified as parameter/value pairs in any
% order, e.g. as in
% mes2way(X,g,'eta2','confLevel',.9);
%
% For information on assumptions of the underlying model and related
% information please see the notes below TABLE 1 further down as well as
% the documentation accompanying this code.
%
% INPUT ARGUMENTS
% ---------------
% stats=mes2way(X,group,esm) computes the effect size measure(s)
% specified in input variable esm (see TABLE 1) from input array X. X
% must be a single-column vector. NaNs or Infs will be eliminated in
% 'pairwise' fashion, that is, without concurrent elimination of other
% values (which would be the case in 'listwise' fashion). group must be a
% two-column array with the same number of rows as X. The numbers in the
% columns of group correspond to the levels of the two factors.
% PLEASE NOTE: the actual values in group may be arbitrary, but rank
% order, not the order in which they appear in group, determines the
% assignment to factor levels. For example, if group is
% 3.1 1
% 3.1 2
% 1.5 1
% 1.5 2
% the first two data points of X are assigned to the SECOND level of the
% first factor (because 3.1 > 1.5). This is particularly relevant for all
% calculations based on contrasts (see below). Input variable esm must be
% a character array (e.g. 'eta2') or a cell array (e.g.
% {'eta2','partialeta2'}); see TABLE 1 below.
% stats=mes2way(...,'fName',{'genotype','treat'}) assigns names to the two
% factors which will be displayed in the summary table of results; by
% default they will be given generic names 'fac1' and 'fac2'
% stats=mes2way(...,'isDep',[1 0]) assumes that the samples in X are
% dependent (repeated measures) with respect to the first factor. Other
% legal input values are [0 1] (dependence with respect to the second
% factor), [1 1] (completely within-subjects design) and [0 0]
% (completely between-subjects design, the default). If there is
% within-subjects dependence along one or both factors, data must be
% balanced. Furthermore, it is assumed that input data X are sorted
% according to subjects; that is, within each group data for subjects are
% listed in the same order.
% stats=mes2way(...,'nBoot',n) computes confidence intervals of the
% statistic in question via bootstrapping n times. n should be on the
% order of thousands, otherwise bootstrapping will lead to inaccurate
% results. By default or if the value of nBoot is set to zero or
% nonsensical values (<0, infinity, nan) confidence intervals will be
% computed analytically (where possible).
% stats=mes2way(...,'confLevel',0.9) computes 90 % confidence
% intervals of the statistic in question (95 % ci are the default; any
% value may be specified)
% stats=mes2way(...,'cWeight',c) allows specification of contrast weights
% for the computation of standardized contrasts (see TABLE 1). The
% required size of input array c depends on the kind of comparison (see
% e.g. Kline 2004 for definitions and the documentation accompanying this
% code for concrete examples):
% MAIN COMPARISON CONTRAST: c must be a single-column array (comparison
% of levels of the first factor) or a single-row array (ditto for
% second factor)
% SIMPLE COMPARISON CONTRAST: c must match the analysis design, i.e. in a
% 2x3 analysis c must have two rows and three columns, but all elements
% except the row or the column of interest must be NaN
% INTERACTION CONTRAST: c must match the analysis design and it should
% also be doubly centered, that is, row sums and column sums must all
% be zero
% stats=mes2way(...,'doDataPlot',true) will produce a plot of the data
% according to the layout of the analyis: levels of the factors are in
% subplot rows/columns, repeated measures data points are plotted with
% identical colors, backgound colors of the plots reflect contrast
% weights
%
% -------------------------------------------------------------------------
% TABLE 1: ANALYSES TO BE SPECIFIED IN INPUT VARIABLE esm
% -------------------------------------------------------------------------
% esm QUANTITIY COMPUTED ((*) require input of contrast weights)
% 'psi' unstandardized contrast (*)
% 'g_psi' standardized contrast (*)
% 'eta2' eta squared
% 'partialeta2' partial eta squared
% 'omega2', omega squared
% 'partialomega2' partial omega squared
%
% Notes:
% i. Parameters in TABLE 1 marked by (*) need contrast weights to be
% computed. The other parameters will be computed for main and interaction
% effects and contrasts (if specified).
% ii. 'g_psi' is one possible twoway equivalent of Hedges' g, namely,
% contrast divided by the square root of the pooled within-conditions
% variance. Its value is identical for dependent and independent data.
% iii. Fixed factors and interactions between the main factors are assumed.
% iv. Data may be unbalanced along the between-subjects factor(s)
% iv. If data is unbalanced it is assumed that the imbalance is due to
% random loss of data, not that unequal cell size is part of the effect.
% Accordingly, type III errors are computed and an unweighted means
% analysis (using harmonic means) is performed
%
% OUTPUT ARGUMENTS
% ----------------
% The results of the computations are placed into fields of output
% structure stats with names corresponding to the analyses requested. For
% example, stats=effectsz_oneway(X,{'eta2','partialeta2'}) will result in
% fields
% .eta2
% .partialeta2
% and so on.
% PLEASE NOTE: if contrast weights were specified, all output arguments
% will be single- or two-column arrays holding results in the following
% (row) order:
% 1. main effect of factor 1
% 2. main effect of factor 2
% 3. interaction effect
% 4. contrast-related effect
% If a parameter is not defined for main/interaction effects or for
% contrasts, the corresponding entries will be NaN.
% Where applicable, confidence intervals will be placed in fields
% .eta2Ci
% .partialeta2Ci
% and the computations underlying confidence intervals (either of 'none',
% 'bootstrap', 'approximate analytical', or 'exact analytical') will be
% placed in fields
% .eta2CiType
% .partialeta2CiType
% Additional fields:
% .n (sample sizes)
% .confLevel (confidence level)
% .contrast (containing fields .weight, the contrast weights and .type,
% the type of comparison)
% stats will also have fields .isDep and .nBoot with the same values as the
% corresponding input arguments, thus providing potentially crucial post-
% analysis information. The second, optional output argument is the summary
% table of results.
% -------------------------------------------------------------------------
% Measures of Effect Size Toolbox Version 1.6.1, November 2018
% Code by Harald Hentschke (University Hospital of Tübingen) and
% Maik Stüttgen (University Medical Center Mainz)
% For additional information see Hentschke and Stüttgen,
% Eur J Neurosci 34:1887-1894, 2011
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------
% STRUCTURE OF CODE
% The code is composed of two major parts: In PART I input arguments are
% checked and pre-processed, 'constants' set up, and all kinds of other
% preparatory and householding jobs accomplished. PART II contains the
% computations proper. Right at the beginning, summed squares, F and p
% values are computed in local function prepcomp, which also accomplishes
% assembly of bootstrapped data if requested. Effect sizes and confidence
% intervals are then computed and the results placed in structure array
% 'stats' as described above. The results are additionally collected in
% cell array 'table' which is displayed in the command window (and may also
% be retrieved as an output argument)
% -------------------------------------------------------------------------
% -------------------------------------------------------------------------
% ------- PART I: CHECKS OF INPUT ARGS & OTHER PREPARATORY WORKS ----------
% -------------------------------------------------------------------------
% ----- default values & varargin -----
% standard values of optional input arguments
fName=[];
isDep=[0 0];
nBoot=0;
cWeight=[];
confLevel=.95;
doDataPlot=false;
% check variable number of input args:
% - even number (parameter AND value specified)?
% - convert to proper upper/lowercase spelling as above
% - check whether valid parameter was given
% - overwrite defaults by values, if specified
nvarg=numel(varargin);
v=who;
if nvarg
if nvarg/2==round(nvarg/2)
for g=1:2:nvarg
% check which optional input parameter is given, ignoring case, and
% impose spelling used internally
ix=find(strcmpi(varargin{g},v));
if ~isempty(ix)
varargin{g}=v{ix};
else
error(['invalid optional input parameter (' varargin{g} ') was specified']);
end
end
% finally, the assignment of values to parameters
pvpmod(varargin);
else
error('optional input parameters must be specified as parameter/value pairs, e.g. as in ''par1'',1')
end
end
% ----- a few 'constants':
alpha=1-confLevel;
% number of factors
nFactor=2;
% minimal number of bootstrapping runs below which a warning will be issued
% (and bootstrapping will be skipped)
minNBootstrap=1000;
% this is an internal switch dictating the way summed squares are computed
% (relevant only to unbalanced designs); currently valid options are
% 'unweighted' and 'Type III'. If set to 'unweighted', an 'unweighted means
% analysis' is performed, that is, grand mean and marginal means are means
% of the corresponding cells NOT weighted by the number of samples in them,
% and 'overall' cell size is the harmonic mean of all cell sizes, which is
% plugged into the traditional formulae for balanced designs. It seems not
% to be used a lot in the literature, so by default the 'Method 1/Type III'
% way according to Overall & Spiegel 1969 is pursued, which is also the
% default in Matlab.
ssType='Type III';
if nargin<3
error('input arguments X, group and esm are mandatory');
end
% Variable list_analyses below is a list of all possible analyses:
% - column 1 holds the shortcut as strings
% - column 2 holds 1 for quantities REQUIRING a contrast
% - column 3 is a short description of the analyses
% This is the 'master list' of all analyses against which input argument
% esm will be checked (see) below
list_analysis={...
'psi' 1, 'unstandardized contrast';...
'g_psi', 1, 'standardized contrast';...
'eta2', 0, 'eta squared';...
'omega2', 0, 'omega squared';...
'partialeta2', 0, 'partial eta squared';...
'partialomega2', 0, 'partial omega squared';...
};
% in case esm is a char array convert it to a cell array because the code
% below relies on it
if ischar(esm)
esm={esm};
end
% the tag column, extracted
listTag=cat(1,list_analysis{:,2});
% indices to currently requested analyses
listIx=ismember(list_analysis(:,1),esm);
% unique tags of these analyses
uTag=unique(listTag(listIx));
% catch a few silly errors:
% - typos or non-existent analysis type
if any(~ismember(esm,list_analysis(:,1)))
error('An illegal type of analysis was specified');
end
% check whether contrast weight(s) were specified, whether they are
% required, and set according flags (exact checks of contrast weights will
% be done further below). Combine all this information in a struct
contrast.weight=cWeight;
if isempty(contrast.weight)
contrast.type='none';
contrast.do=false;
if any(uTag)
error('part of the requested analyses require contrast weights as input args')
end
else
contrast.do=true;
% kind of contrast unknown at this point (see further below)
contrast.type='unspec';
end
% --- check input X and group
[nRowX nColX]=size(X);
[nRowG nColG]=size(group);
if nColX~=1
error('X must be a single column-array');
end
% - number of rows not matching
if nRowG~=nRowX
error('input variables group and X must have the same number of rows');
end
if nColG~=nFactor
error('input variable group must have two columns representing the levels of the two factors');
end
% - undefined elements in group
if any(~isfinite(group))
error('input variable group contains NaNs or Infs');
end
% - nans and infs in X
badIx=find(~isfinite(X));
if ~isempty(badIx)
warning('eliminating NaNs and Infs from input variable X');
X(badIx)=[];
group(badIx,:)=[];
nRowX=nRowX-numel(badIx);
nRowG=nRowG-numel(badIx);
end
% determine how many factors and levels there are, on the occasion
% replacing the values in variable group (i.e. the levels of the factors)
% by integers 1,2,... because function dummyvar used below requires this
for g=1:nFactor
[factor(g).level,nada,intG]=unique(group(:,g));
group(:,g)=intG;
factor(g).nLevel=numel(factor(g).level);
% factor(g).levelName=cellstr([repmat('level',factor(g).nLevel,1) int2str((1:factor(g).nLevel)')]);
end
% assign labels to factors
if iscell(fName) && numel(fName)==2
[factor.name]=deal(fName{:});
else
% if fName is anything but the default empty matrix, warn
if ~isempty(fName)
warning('check names for factors - setting generic names')
end
[factor.name]=deal('fac1','fac2');
end
% number of individual groups (cells) (nonredundant combinations of levels
% of all factors)
nGroup=prod([factor.nLevel]);
% ****************************** NOTE: ************************************
% the structure/layout of all intermediate and final results hinges on the
% order of groups established below by unique, namely, the rank order of
% the (numeric) group labels!
% *************************************************************************
[uGroup,aIx,bIx]=unique(group,'rows');
% any empty cell?
if nGroup~=size(uGroup,1)
error('there is at least one empty group (cell), which is not allowed in factorial designs');
end
% if group is unsorted in the sense that samples from any group do not
% form a contiguous block it appears possible that the data are messed
% up, so better generate an error here and force the user to rethink (and
% sort) the data
isContiguousGroups=sum(any(diff(group),2))==nGroup-1;
if ~isContiguousGroups
error([mfilename ' expects samples from each group to form contiguous blocks. Please sort your data accordingly']);
end
% *** for each group, determine indexes & count samples. Arrange the
% results in 2D cell array groupIx according to the analysis design: first
% factor = rows, second factor = columns ***
% (use output from unique, linear indexing and transposition to embed
% properly)
groupIx=cell([factor.nLevel])';
nSample=zeros([factor.nLevel])';
for gIx=1:nGroup
tmpIx=find(bIx==gIx);
groupIx{gIx}=tmpIx;
nSample(gIx)=numel(tmpIx);
end
% don't forget to transpose
groupIx=groupIx';
nSample=nSample';
% in contrast to the 2D layout of groupIx and nSample most variables (i.e.
% summed squares, etc.) will have a 1D layout, generated by accessing
% elements of groupIx via linear indexing (the 2nd dim is reserved for
% bootstrapped data). So, in order to compute e.g. marginal means we need
% linear indexes: 1D equivalents of 2D indexes into entire rows and columns
% in groupIx: with the code below, e.g. the first row of s2i2 contains
% indexes into e.g. r.meanGroup (computed in local function prepcomp),
% corresponding to the first row of groupIx, that is, all data of the first
% level of the first factor, and so on. Likewise, the first column will
% contain indexes to the first level of the second factor. (naming: s2i2 as
% a shortcut for 'output of sub2ind, placed in 2D array')
s2i2=reshape(1:nGroup,[factor.nLevel]);
% just to be 100% sure, this is an internal check that elements of groupIx
% are really integers incrementing in steps of 1
for g=1:nGroup
tmp=unique(diff(groupIx{g}));
if numel(groupIx{g})>1 && ~(numel(tmp)==1 && tmp==1)
error('internal: groupIx messed up - tell the programmer');
end
end
% --- check bootstrapping settings
doBoot=false;
if isfinite(nBoot)
if nBoot>=minNBootstrap;
doBoot=true;
else
if nBoot~=0
% warn only if nBoot small but different from zero because zero may
% be a deliberate input value
warning('number of bootstrap repetitions is not adequate - not bootstrapping');
end
nBoot=0;
end
end
% --- check other input arguments
if confLevel<=0 || confLevel>=1
error('input variable ''confLevel'' must be a scalar of value >0 and <1');
end
% deal with contrast weights
if contrast.do
[cwN1 cwN2]=size(contrast.weight);
% should there be Infs, convert to NaNs
contrast.weight(isinf(contrast.weight))=nan;
if cwN1==factor(1).nLevel && cwN2==1
% single-column array: main comparison of first level
contrast.type='main1';
elseif cwN1==1 && cwN2==factor(2).nLevel
% single-row array: main comparison of second level
contrast.type='main2';
elseif isequal([cwN1 cwN2],[factor.nLevel])
% layout of contrast.weight mirrors analysis design, but is not a 1 by
% cwN2 or cwN1 by 1 design
cwIsFin=isfinite(contrast.weight);
if all(all(cwIsFin))
% all values are finite: interaction contrast
contrast.type='interaction';
elseif numel(find(any(cwIsFin,1)))==1 && numel(find(any(cwIsFin,2)))==factor(1).nLevel
% only one column contains finite values: simple comparison of first
% factor at specific level of second factor
contrast.type='simple1';
elseif numel(find(any(cwIsFin,2)))==1 && numel(find(any(cwIsFin,1)))==factor(2).nLevel
% the inverse
contrast.type='simple2';
else
error('check matrix of contrast weights - it contains NaNs or Infs in improper places');
end
else
error('check layout of contrast weights');
end
end
% final checks: values
if contrast.do
if any(strcmp(contrast.type,{'simple1','simple2','main1','main2'}))
if nansum(nansum(abs(contrast.weight)))-2>eps(2)
warning('contrast weights for simple or main comparison are not a standard set: the standardized mean difference g_psi computed with this set does not represent the difference between the averages of two subsets of means')
end
elseif strcmp(contrast.type,{'interaction'})
if ~sum(sum(abs(contrast.weight)))
error('contrast weights are all zero');
elseif any(abs(sum(contrast.weight,1))>eps(1)) || any(abs(sum(contrast.weight,2))>eps(1))
warning('array of contrast weights must be doubly centered, otherwise the resulting contrast is NOT independent of the main effects');
elseif sum(sum(abs(contrast.weight)))-4>eps(4)
warning('the sum of the absolute values of contrast weights is unequal 4: the standardized mean difference g_psi computed with this set does not represent the difference between a pair of simple comparisons');
end
end
end
% check design (isDep) and sample sizes
isDep=logical(isDep(:)');
if ~isequal(size(isDep), [1 2])
error('check input variable ''isDep'' - it must be a two-element array'),
end
% in repeated measures designs check whether sample sizes match
if any(isDep)
if isDep(1) && size(unique(nSample,'rows'),1)~=1
error(['cell sizes across within-subjects factor (' factor(1).name ') must all be equal']);
end
% note the transpose
if isDep(2) && size(unique(nSample','rows'),1)~=1
error(['cell sizes across within-subjects factor (' factor(2).name ') must all be equal']);
end
end
% if plot of data is requested do it here before the computations
if doDataPlot
mesdplot(X,groupIx,nSample,factor,isDep,fName,contrast)
end
% -------------------------------------------------------------------------
% ------- PART II: THE WORKS ----------
% -------------------------------------------------------------------------
% create a few standard fields
stats.isDep=isDep;
stats.nBoot=nBoot;
stats.confLevel=confLevel;
stats.n=nSample;
stats.contrast.type=contrast.type;
stats.contrast.weight=contrast.weight;
% preparatory computations of SS, MS etc.
r=prepcomp(X,group,groupIx,factor,s2i2,nSample,isDep,doBoot,nBoot,contrast,ssType,alpha);
% if partialeta2 or partialomega2 or both are requested AND analytical CI
% shall be computed AND the data are independent, compute CI for partial
% eta2 here because those of partial omega2 can be derived from them (and
% computing them independently of each other would be a waste).
% Note on the side: in twoway designs, exact confidence intervals can be
% computed (via noncentral F) only for the partialled versions of eta2 and
% omega2. This is because the denominator in the formula for e.g. eta2 is
% SStot=SSerr+SS1+SS2+SS12, meaning that eta2 depends on several
% noncentralities. Thus, even if it is mentioned only in passing (or not at
% all) in papers, if analytical ci for what the authors term eta squared or
% omega squared are specified, in all likelihood these are the ci for the
% partialled MES
if any(ismember({'partialeta2','partialomega2'},esm)) && ~doBoot && ~any(isDep)
% exact analytical confidence intervals for partial eta2 (Smithson 2003, p.43 [5.6])
% - main effects
for fi=1:2
tmp=ncpci(r.factor(fi).F,'F',[r.factor(fi).df,r.dfErr],'confLevel',confLevel);
pEta2Ci(fi,1:2)=tmp./(tmp+r.factor(fi).df+r.dfErr+1);
end
% - interaction
tmp=ncpci(r.factor12.F,'F',[r.factor12.df,r.dfErr],'confLevel',confLevel);
pEta2Ci(3,:)=tmp./(tmp+r.factor12.df+r.dfErr+1);
% - contrast
if contrast.do
tmp=ncpci(r.FPsi,'F',[1,r.dfErr],'confLevel',confLevel);
pEta2Ci(4,:)=tmp./(tmp+1+r.dfErr+1);
end
% information on kind of CI
pEta2CiType=repmat('exact analytical',3+contrast.do,1);
end
% now computations of effect size parameters
nEs=numel(esm);
% a temporary container to hold es and ci for the table of results to be
% displayed; column order is [es ci_lo ci_up] en block for each es in the
% order in which they are computed; row order is factor1, factor2,
% factor1*factor2, contrast
esStore=repmat(nan,[3+contrast.do nEs*3]);
for tti=1:nEs
curEs=esm{tti};
es=repmat(nan,3+contrast.do,1);
% If analytical confidence intervals for the statistic in question cannot
% be computed and no bootstrapping is requested, ci must be set to nan.
% Do this here for all statistics to avoid redundant assignments. ci will
% be overwritten with meaningful values if i) there is a formula for
% analytical confidence intervals implemented within the respective case
% in the switch statement, or ii) confidence intervals based on
% bootstrapping are computed right after the switch statement
ci=repmat(nan,3+contrast.do,2);
% a similar argument applies to variable ciType, which indicates on which
% method the computation of ci is based (which may differ between main
% and interaction effects and contrasts, hence we need more than one row
if doBoot
ciType=repmat('bootstrap',3+contrast.do,1);
else
ciType=repmat('none',3+contrast.do,1);
end
switch curEs
case 'psi'
% rows 1-3 are nans because they are reserved for main and
% interaction effects; then the contrast
es=cat(1,repmat(nan,3,nBoot+1),r.psi);
if ~doBoot
ci(4,:)=r.ciPsi;
ciType=char(repmat('none',3,1),'exact analytical');
end
case 'g_psi'
% rows 1-3 are nans because this mes is only defined for contrasts;
% then the contrast divided by standardizer, the square root of the
% pooled within-conditions variance, making this one possible
% equivalent of Hedges' g
es=cat(1,repmat(nan,3,nBoot+1),r.psi./sqrt(r.msErr));
if ~doBoot
% independent samples: exact confidence intervals
if ~any(isDep)
% relation of ncp to g_psi: Kline formula 6.14, p. 177
ci(4,:)=sqrt(r.denomSsPsi)*ncpci(r.tPsi,'t',r.df4nc_Psi,'confLevel',confLevel);
ciType=char(repmat('none',3,1),'exact analytical');
end
end
case 'eta2'
% main effects
es(1,1:nBoot+1)=r.factor(1).ss./r.ssTot;
es(2,:)=r.factor(2).ss./r.ssTot;
% interaction
es(3,:)=r.factor12.ss./r.ssTot;
% contrast
if contrast.do
es(4,:)=r.ssPsi./r.ssTot;
end
% in contrast to oneway analyses exact CI are not computable for
% eta2
case 'partialeta2'
% main effects
% (note the second term in the denominator, which is the
% design-dependent error of the effect)
es(1,1:nBoot+1)=r.factor(1).ss./(r.factor(1).ss+r.factor(1).ssEffErr);
es(2,:)=r.factor(2).ss./(r.factor(2).ss+r.factor(2).ssEffErr);
% interaction
es(3,:)=r.factor12.ss./(r.factor12.ss+r.factor12.ssEffErr);
% contrast
if contrast.do
% (note second term in denominator)
es(4,:)=r.ssPsi./(r.ssPsi+r.ssEffErr_Psi);
end
% exact analytical ci apply only to completely between subjects
% design
if ~doBoot && ~any(isDep)
ci=pEta2Ci;
ciType=pEta2CiType;
end
case 'omega2'
if ~any(isDep)
% main effects
es(1,1:nBoot+1)=(r.factor(1).ss-r.factor(1).df.*r.msErr)./(r.ssTot+r.msErr);
es(2,:)=(r.factor(2).ss-r.factor(2).df.*r.msErr)./(r.ssTot+r.msErr);
% interaction
es(3,:)=(r.factor12.ss-r.factor12.df.*r.msErr)./(r.ssTot+r.msErr);
if contrast.do
% contrasts: df(effect)=1 and MS=SS
es(4,:)=(r.ssPsi-1*r.msErr)./(r.ssTot+r.msErr);
end
% ci: see corresponding comments for eta2
end
case 'partialomega2'
if ~any(isDep)
% (simplified formula 6.31, p. 186, Kline 2004)
tmp=prod([factor.nLevel])*r.hCellSz;
% main effects
es(1,1:nBoot+1)=r.factor(1).df*(r.factor(1).F-1)./(r.factor(1).df*(r.factor(1).F-1)+tmp);
es(2,:)=r.factor(2).df*(r.factor(2).F-1)./(r.factor(2).df*(r.factor(2).F-1)+tmp);
% interaction
es(3,:)=r.factor12.df*(r.factor12.F-1)./(r.factor12.df*(r.factor12.F-1)+tmp);
if contrast.do
% contrast: df(effect)=1
es(4,:)=1*(r.FPsi-1)./(1*(r.FPsi-1)+tmp);
end
if ~doBoot
% exact analytical confidence intervals according to Fidler &
% Thompson 2001, p. 593, based on those for partial eta2
tmp=(r.ssTot*(1-pEta2Ci))/r.dfErr;
% main effects, interaction and contrast all in one step as the
% only free variable is df
tmp2=cat(1,r.factor.df,r.factor12.df,find(contrast.do))*[1 1];
ci=(r.ssTot*pEta2Ci-tmp2.*tmp)./(r.ssTot+tmp);
ciType=pEta2CiType;
end
end
otherwise
error(['internal error: unrecognized test not caught by input checks: ' curEs]);
end
% *********************************************************************
% If data were NOT bootstrapped, all computations are done at this
% point and the results can be placed into appropriate fields of output
% variable stats. If they were bootstrapped, confidence intervals must
% be computed and the ES statistics extracted from the first element of
% variable es.
% *********************************************************************
if doBoot
% determine confidence intervals from array of effect size measures
% generated from bootstrapped data
ci=prctile(es(:,2:end)',[alpha/2 1-alpha/2]'*100)';
% retain first column; this is the es computed from real data
es=es(:,1);
end
% place es and ci in esStore
esStore(:,(tti-1)*3+1:tti*3)=[es ci];
% finally, use dynamic fields to store currently computed measures in
% output variable stats
stats.(curEs)=es;
stats.([curEs 'Ci'])=ci;
stats.([curEs 'CiType'])=ciType;
end
% assemble table for display and optional output:
% the concatenated es and ci as cell array
esStore=num2cell(esStore);
% 'fillers' of empty cells
filla=cell(1,nEs*3);
% insert ci titles
ciTi=cell(2,nEs);
[ciTi{1,:}]=deal('ci_lo');
[ciTi{2,:}]=deal('ci_up');
esm=cat(1,esm,ciTi);
esm=esm(:)';
% column order:
% source | SS | df | MS | F | p | effect sizes (in the order requested)
summaryTable={...
'SOURCE', 'SS', 'df', 'MS', 'F', 'p', esm{1:end}};
caseStr={'between-subjects','within-subjects'};
caseCondit=[false true];
% loop over between/within subjects cases
for caseIx=1:2
st=caseStr{caseIx};
if any(isDep==caseCondit(caseIx))
summaryTable=cat(1,summaryTable,...
{caseStr{caseIx}, '---', '---', '---', '---', '---', filla{1:end}});
for g=1:2
if isDep(g)==caseCondit(caseIx)
tmp=['- ' factor(g).name];
summaryTable=cat(1,summaryTable,...
{tmp, r.factor(g).ss(1), r.factor(g).df, r.factor(g).ms(1), r.factor(g).F(1), r.factor(g).p(1), esStore{g,:}});
end
end
if ~any(isDep) && caseIx==1 || (any(isDep) && caseIx==2)
tmp=['- ' factor(1).name '*' factor(2).name];
summaryTable=cat(1,summaryTable,...
{tmp, r.factor12.ss(1), r.factor12.df, r.factor12.ms(1), r.factor12.F(1), r.factor12.p(1), esStore{3,:}});
end
end
end
if contrast.do
summaryTable=cat(1,summaryTable,...
{'contrast', '---', '---', '---', '---', '---', filla{1:end}},...
{['- ' contrast.type ], r.ssPsi(1), 1, r.msPsi(1), r.FPsi(1), r.pPsi(1), esStore{4,:}});
end
summaryTable=cat(1,summaryTable,...
{'within-cells', r.ssErr(1), r.dfErr, r.msErr(1), [], [], filla{1:end}});
switch sum(isDep)
case 1
% mixed within-subjects
% - index to between-subjects factor
bi=find(~isDep);
% - same for within-subjects
wi=find(isDep);
tmp1=['- subj within ' factor(bi).name];
tmp2=['- ' factor(wi).name '*subj within ' factor(bi).name];
summaryTable=cat(1,summaryTable,...
{tmp1, r.ssSubjWithinNonRM(1), r.dfSubjWithinNonRM, r.msSubjWithinNonRM(1), [], [], filla{1:end}},...
{tmp2, r.ssSubjRM(1), r.dfSubjRM, r.msSubjRM(1), [], [], filla{1:end}});
case 2
% completely within-subjects
summaryTable=cat(1,summaryTable,...
{'- subjects', r.ssSubj(1), r.dfSubj, r.msSubj(1), [], [], filla{1:end}});
for g=1:2
tmp=['- ' factor(g).name '*subj'];
summaryTable=cat(1,summaryTable,...
{tmp, r.factor(g).ssSubj(1), r.factor(g).dfSubj, r.factor(g).msSubj(1), [], [], filla{1:end}});
end
tmp=['- ' factor(1).name '*' factor(2).name '*subj'];
summaryTable=cat(1,summaryTable,...
{tmp, r.factor12.ssSubj(1), r.factor12.dfSubj, r.factor12.msSubj(1), [], [], filla{1:end}});
end
% finally, add line for total error
summaryTable=cat(1,summaryTable,...
{'total', r.ssTot(1), r.dfTot, r.msTot(1), [], [], filla{1:end}});
% display summaryTable
summaryTable
if nargout>1
varargout{1}=summaryTable;
end
% ========================= LOCAL FUNCTIONS ===============================
% ========================= LOCAL FUNCTIONS ===============================
function r=prepcomp(x,group,groupIx,factor,s2i2,nSample,isDep,doBoot,nBoot,contrast,ssType,alpha)
% performs preparatory computations for 2-way analyses on single column
% array x with group assignment coded by input var group
% note on terminology: 'group' is equivalent to 'cell'
% number of factors and groups (cells)
nFactor=numel(factor);
nGroup=prod([factor.nLevel]);
% ------------------ START BY BOOTSTRAPPING (IF REQUESTED) ----------------
if doBoot
% *********************************************************************
% Here, individual, groupwise resampled instances of variable X are
% generated, expanding X in the second dimension: the first column
% contains the original data, the others will be filled up with sampled
% (with replacement) data.
% *********************************************************************
% variable bootSamX generated below shall contain indices to be used for
% randomly sampling (with replacement) the original data (*** requires
% groupIx to be integers incrementing in steps of 1! ***)
switch sum(isDep)
case 0
% completely within-subjects: resample data within each group
% independently of data points picked in other groups
bootSamX=repmat(nan,size(x,1),nBoot);
for g=1:nGroup
bootSamX(groupIx{g},1:nBoot)=groupIx{g}(1)-1+ceil(nSample(g)*rand([nSample(g) nBoot]));
end
case 1
% mixed within-subjects: the innermost loop applies a random sampling
% index (offset-corrected) to all groups within a given column of
% groupIx; this is done column by column of groupIx. This amounts to
% a within-subjects design along the first factor; if the
% within-subjects axis is along the second factor, we have to
% temporarily transpose groupIx and nSample
if isequal(isDep,[false true])
groupIx=groupIx';
nSample=nSample';
end
bootSamX=repmat(nan,size(x,1),nBoot);
for cIx=1:size(groupIx,2)
% generic random sampling index for groups in current column
partSamIx=ceil(nSample(1,cIx)*rand([nSample(1,cIx) nBoot]));
for rIx=1:size(groupIx,1)
bootSamX(groupIx{rIx,cIx},:)=partSamIx+groupIx{rIx,cIx}(1)-1;
end
end
% retranspose
if isequal(isDep,[false true])
groupIx=groupIx';
nSample=nSample';
end
clear partSamIx;
case 2
% completely within-subjects: generate random sampling index for
% first group and replicate for all other groups (which are identical
% in size)
bootSamX=repmat(ceil(nSample(1)*rand([nSample(1) nBoot])),[nGroup,1]);
% add offset due to arrangement of data in a single-column array
for g=1:nGroup
bootSamX(groupIx{g},:)=bootSamX(groupIx{g},:)+groupIx{g}(1)-1;
end
end
% from second column onwards fill with sampled data
x(:,2:nBoot+1)=x(bootSamX);
% delete resampling index
clear bootSam*
end
% --------------------- COMPUTATIONS PROPER ------------------------------
% within-groups SS, the individual groups' means and SS_error
r.ssErr=0;
for g=nGroup:-1:1
% means of groups
r.meanGroup(g,:)=sum(x(groupIx{g},:))/nSample(g);
% within-groups SS
r.ssErr=r.ssErr+sum((x(groupIx{g},:)-repmat(r.meanGroup(g,:),nSample(g),1)).^2);
end
% within-groups df
r.dfErr=sum(sum(nSample-1));
% within-groups MS
r.msErr=r.ssErr/r.dfErr;
% mean of all data points
r.mean=mean(x,1);
% unweighted arithmetic mean of all cell means
r.meanGrand=mean(r.meanGroup);
% cell size: harmonic mean
r.hCellSz=nGroup/sum(1./nSample(:));
% cell size: arithmetic mean
r.aCellSz=mean(nSample(:));
% for both factors, compute df, marginal means and SS_a, or SS_effect, the
% between-groups SS (or effect sum of squares)
switch ssType
case 'unweighted'
% ** unweighted means method using simple formulae for balanced data
% and harmonic mean of cell size to accomodate unbalanced data
for fi=1:nFactor
% permute if fi==2
s2i2=permute(s2i2,mod((1:nFactor)+fi,nFactor)+1);
r.factor(fi).df=factor(fi).nLevel-1;
r.factor(fi).ss=0;
for lix=factor(fi).nLevel:-1:1
% unweighted marginal means
r.factor(fi).margMean(lix,:)=mean(r.meanGroup(s2i2(lix,:),:));
r.factor(fi).ss=r.factor(fi).ss+...
factor(mod(fi,nFactor)+1).nLevel*r.hCellSz*(r.factor(fi).margMean(lix,:)-r.meanGrand).^2;
end
r.factor(fi).ms=r.factor(fi).ss/r.factor(fi).df;
% re-permute if fi==2
s2i2=permute(s2i2,mod((1:nFactor)+fi,nFactor)+1);
end
% interaction terms
r.factor12.df=r.factor(1).df*r.factor(2).df;
r.factor12.ss=0;
for lix1=factor(1).nLevel:-1:1
for lix2=factor(2).nLevel:-1:1
r.factor12.ss=r.factor12.ss+...
r.hCellSz*(r.meanGroup(s2i2(lix1,lix2),:)-...
r.factor(1).margMean(lix1,:)-...
r.factor(2).margMean(lix2,:)+...
r.meanGrand).^2;
end
end
r.factor12.ms=r.factor12.ss/r.factor12.df;
case 'Type III'
% ** Method 1/Type III SS
% i. create design matrix and bring it in proper shape:
dm=dummyvar(group);
% temporary helper var used for indexing
tmp=[0 factor.nLevel];
for fi=1:nFactor
% within each factor, subtract last level's column from other columns
% in dm
dm(:,(1:tmp(fi+1))+tmp(fi))=dm(:,(1:tmp(fi+1))+tmp(fi))-...
repmat(dm(:,sum(tmp(fi:fi+1))),1,tmp(fi+1));
% df of main factor
r.factor(fi).df=factor(fi).nLevel-1;
% marginal mean: permute groupIx and/or s2i2 if fi==2
groupIx=permute(groupIx,mod((1:nFactor)+fi,nFactor)+1);
s2i2=permute(s2i2,mod((1:nFactor)+fi,nFactor)+1);
for lix=factor(fi).nLevel:-1:1
% unweighted marginal mean (=mean of cell means across rows or
% columns regardless of cell size)
r.factor(fi).margMean(lix,:)=mean(r.meanGroup(s2i2(lix,:),:));
% % marginal mean from raw scores - not recommended
% r.factor(fi).margMean(lix,:)=mean(x(cat(1,groupIx{lix,:}),:));
end
% re-permute if fi==2
groupIx=permute(groupIx,mod((1:nFactor)+fi,nFactor)+1);
s2i2=permute(s2i2,mod((1:nFactor)+fi,nFactor)+1);
end
% within each factor, delete columns corresponding to last level in dm
dm(:,cumsum(tmp(2:end)))=[];
% now add interaction columns:
ct=prod([r.factor.df]);
for lix1=r.factor(1).df:-1:1
for lix2=r.factor(2).df:-1:1
dm(:,ct+sum([r.factor.df]))=dm(:,lix1).*dm(:,lix2+r.factor(1).df);
ct=ct-1;
end
end
% df of interaction
r.factor12.df=r.factor(1).df*r.factor(2).df;
% ii. compute regression-related SS
% the vector of ones which must be added to obtain a constant term from
% the regressions
vo=ones(size(x,1),1);
% regressions:
% - a helper index, pointing to the column in the design matrix dm
% corresponding to the last entry for 'main' effects
tmpIx=sum([r.factor.df]);
% - a,b,ab
ss_abab=bbregress(x,[vo dm]);
% - a,b
ss_ab=bbregress(x,[vo dm(:,1:tmpIx)]);
% - a,ab
ss_aab=bbregress(x,[vo dm(:,[1:r.factor(1).df tmpIx+1:end])]);
% - b,ab
ss_bab=bbregress(x,[vo dm(:,[r.factor(1).df+1:end])]);
% iii. finally, SS and MS associated with main and interaction effects
r.factor(1).ss=ss_abab-ss_bab;
r.factor(2).ss=ss_abab-ss_aab;
r.factor12.ss=ss_abab-ss_ab;
r.factor(1).ms=r.factor(1).ss/r.factor(1).df;
r.factor(2).ms=r.factor(2).ss/r.factor(2).df;
r.factor12.ms=r.factor12.ss/r.factor12.df;
clear dm ct vo tmp* ss*
end
% SS_t, the sum of all ss, computed straight from the data
r.ssTot=sum((bsxfun(@minus,x,r.mean)).^2);
% corresponding df, ms
r.dfTot=r.factor(1).df+r.factor(2).df+r.factor12.df+r.dfErr;
r.msTot=r.ssTot/r.dfTot;
% compute contrasts and associated SS
if contrast.do
switch contrast.type
case {'simple1','simple2'}
% linear index to all non-nan elements in contrast.weight...
mIx=find(isfinite(contrast.weight(:)));
% ...to be used for calculation of contrast
r.psi=sum(repmat(contrast.weight(mIx),1,nBoot+1).*r.meanGroup(mIx,:));
% denominator for SS, which will later also be used for computation
% of confidence interval
r.denomSsPsi=sum(contrast.weight(mIx).^2./nSample(mIx));
% SS
r.ssPsi=r.psi.^2./r.denomSsPsi;
case {'main1','main2'}
% index to factor under consideration (note usage of last letter of
% contrast.type)
ix=sscanf(contrast.type(end),'%i');
% index to other factor
oix=mod(ix,2)+1;
% instead of computing contrast from marginal means replicate
% contrast weights according to design and compute cellwise, then
% average
cw=repmat(contrast.weight,circshift([1 factor(oix).nLevel],[0 ix-1]));
r.psi=sum(repmat(cw(:),1,nBoot+1).*r.meanGroup)/factor(oix).nLevel;
% denominator for SS
r.denomSsPsi=sum(contrast.weight.^2./sum(nSample,oix));
% SS
r.ssPsi=r.psi.^2./r.denomSsPsi;
case 'interaction'
r.psi=sum(repmat(contrast.weight(:),1,nBoot+1).*r.meanGroup);
% denominator for SS
r.denomSsPsi=sum(contrast.weight(:).^2./nSample(:));
% SS
r.ssPsi=r.psi.^2./r.denomSsPsi;
end
% as df is always 1 MS=SS, but create field nonetheless
r.msPsi=r.ssPsi;
end
% compute design-dependent SS, F, p for main and interaction effects as
% well as contrast
switch sum(isDep)
case 0
% *****************************
% completely between-subjects:
% *****************************
% effect error SS, F, p for main and interaction effects
for fi=1:2
% the effect error SS - generally it depends on the design; it is