-
Notifications
You must be signed in to change notification settings - Fork 531
/
Copy pathh5s.pyx
628 lines (457 loc) · 17.6 KB
/
h5s.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# cython: language_level=3
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License: Standard 3-clause BSD; see "license.txt" for full license terms
# and contributor agreement.
"""
Low-level interface to the "H5S" family of data-space functions.
"""
include "config.pxi"
# C-level imports
from .utils cimport require_tuple, convert_dims, convert_tuple, \
emalloc, efree, create_numpy_hsize, create_hsize_array
cimport numpy as cnp
#Python level imports
from ._objects import phil, with_phil
cdef object lockid(hid_t id_):
cdef SpaceID space
space = SpaceID(id_)
space.locked = 1
return space
# === Public constants and data structures ====================================
#enum H5S_seloper_t:
SELECT_NOOP = H5S_SELECT_NOOP
SELECT_SET = H5S_SELECT_SET
SELECT_OR = H5S_SELECT_OR
SELECT_AND = H5S_SELECT_AND
SELECT_XOR = H5S_SELECT_XOR
SELECT_NOTB = H5S_SELECT_NOTB
SELECT_NOTA = H5S_SELECT_NOTA
SELECT_APPEND = H5S_SELECT_APPEND
SELECT_PREPEND = H5S_SELECT_PREPEND
SELECT_INVALID = H5S_SELECT_INVALID
ALL = lockid(H5S_ALL) # This is accepted in lieu of an actual identifier
# in functions like H5Dread, so wrap it.
UNLIMITED = H5S_UNLIMITED
#enum H5S_class_t
NO_CLASS = H5S_NO_CLASS
SCALAR = H5S_SCALAR
SIMPLE = H5S_SIMPLE
globals()["NULL"] = H5S_NULL # "NULL" is reserved in Cython
#enum H5S_sel_type
SEL_ERROR = H5S_SEL_ERROR
SEL_NONE = H5S_SEL_NONE
SEL_POINTS = H5S_SEL_POINTS
SEL_HYPERSLABS = H5S_SEL_HYPERSLABS
SEL_ALL = H5S_SEL_ALL
# === Basic dataspace operations ==============================================
@with_phil
def create(int class_code):
"""(INT class_code) => SpaceID
Create a new HDF5 dataspace object, of the given class.
Legal values are SCALAR and SIMPLE.
"""
return SpaceID(H5Screate(<H5S_class_t>class_code))
@with_phil
def create_simple(object dims_tpl, object max_dims_tpl=None):
"""(TUPLE dims_tpl, TUPLE max_dims_tpl) => SpaceID
Create a simple (slab) dataspace from a tuple of dimensions.
Every element of dims_tpl must be a positive integer.
You can optionally specify the maximum dataspace size. The
special value UNLIMITED, as an element of max_dims, indicates
an unlimited dimension.
"""
cdef int rank
cdef hsize_t* dims = NULL
cdef hsize_t* max_dims = NULL
require_tuple(dims_tpl, 0, -1, b"dims_tpl")
rank = len(dims_tpl)
require_tuple(max_dims_tpl, 1, rank, b"max_dims_tpl")
try:
dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(dims_tpl, dims, rank)
if max_dims_tpl is not None:
max_dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(max_dims_tpl, max_dims, rank)
return SpaceID(H5Screate_simple(rank, dims, max_dims))
finally:
efree(dims)
efree(max_dims)
@with_phil
def decode(buf):
"""(STRING buf) => SpaceID
Unserialize a dataspace. Bear in mind you can also use the native
Python pickling machinery to do this.
"""
cdef char* buf_ = buf
return SpaceID(H5Sdecode(buf_))
# === H5S class API ===========================================================
cdef class SpaceID(ObjectID):
"""
Represents a dataspace identifier.
Properties:
shape
Numpy-style shape tuple with dimensions.
* Hashable: No
* Equality: Unimplemented
"""
@property
def shape(self):
""" Numpy-style shape tuple representing dimensions. () == scalar.
"""
with phil:
return self.get_simple_extent_dims()
@with_phil
def copy(self):
"""() => SpaceID
Create a new copy of this dataspace.
"""
return SpaceID(H5Scopy(self.id))
@with_phil
def encode(self):
"""() => STRING
Serialize a dataspace, including its selection. Bear in mind you
can also use the native Python pickling machinery to do this.
"""
cdef void* buf = NULL
cdef size_t nalloc = 0
H5Sencode(self.id, NULL, &nalloc)
buf = emalloc(nalloc)
try:
H5Sencode(self.id, buf, &nalloc)
pystr = PyBytes_FromStringAndSize(<char*>buf, nalloc)
finally:
efree(buf)
return pystr
def __reduce__(self):
with phil:
return (type(self), (-1,), self.encode())
def __setstate__(self, state):
cdef char* buf = state
with phil:
self.id = H5Sdecode(buf)
# === Simple dataspaces ===================================================
@with_phil
def is_simple(self):
"""() => BOOL is_simple
Determine if an existing dataspace is "simple" (including scalar
dataspaces). Currently all HDF5 dataspaces are simple.
"""
return <bint>(H5Sis_simple(self.id))
@with_phil
def offset_simple(self, object offset=None):
"""(TUPLE offset=None)
Set the offset of a dataspace. The length of the given tuple must
match the rank of the dataspace. If None is provided (default),
the offsets on all axes will be set to 0.
"""
cdef int rank
cdef int i
cdef hssize_t *dims = NULL
try:
if not H5Sis_simple(self.id):
raise ValueError("%d is not a simple dataspace" % self.id)
rank = H5Sget_simple_extent_ndims(self.id)
require_tuple(offset, 1, rank, b"offset")
dims = <hssize_t*>emalloc(sizeof(hssize_t)*rank)
if(offset is not None):
convert_tuple(offset, <hsize_t*>dims, rank)
else:
# The HDF5 docs say passing in NULL resets the offset to 0.
# Instead it raises an exception. Imagine my surprise. We'll
# do this manually.
for i in range(rank):
dims[i] = 0
H5Soffset_simple(self.id, dims)
finally:
efree(dims)
@with_phil
def get_simple_extent_ndims(self):
"""() => INT rank
Determine the rank of a "simple" (slab) dataspace.
"""
return H5Sget_simple_extent_ndims(self.id)
@with_phil
def get_simple_extent_dims(self, int maxdims=0):
"""(BOOL maxdims=False) => TUPLE shape
Determine the shape of a "simple" (slab) dataspace. If "maxdims"
is True, retrieve the maximum dataspace size instead.
"""
cdef int rank
cdef hsize_t* dims = NULL
if self.get_simple_extent_type() == H5S_NULL:
return None
rank = H5Sget_simple_extent_dims(self.id, NULL, NULL)
dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
try:
if maxdims:
H5Sget_simple_extent_dims(self.id, NULL, dims)
else:
H5Sget_simple_extent_dims(self.id, dims, NULL)
return convert_dims(dims, rank)
finally:
efree(dims)
@with_phil
def get_simple_extent_npoints(self):
"""() => LONG npoints
Determine the total number of elements in a dataspace.
"""
return H5Sget_simple_extent_npoints(self.id)
@with_phil
def get_simple_extent_type(self):
"""() => INT class_code
Class code is either SCALAR or SIMPLE.
"""
return <int>H5Sget_simple_extent_type(self.id)
# === Extents =============================================================
@with_phil
def extent_copy(self, SpaceID source not None):
"""(SpaceID source)
Replace this dataspace's extent with another's, changing its
typecode if necessary.
"""
H5Sextent_copy(self.id, source.id)
@with_phil
def set_extent_simple(self, object dims_tpl, object max_dims_tpl=None):
"""(TUPLE dims_tpl, TUPLE max_dims_tpl=None)
Reset the dataspace extent via a tuple of dimensions.
Every element of dims_tpl must be a positive integer.
You can optionally specify the maximum dataspace size. The
special value UNLIMITED, as an element of max_dims, indicates
an unlimited dimension.
"""
cdef int rank
cdef hsize_t* dims = NULL
cdef hsize_t* max_dims = NULL
require_tuple(dims_tpl, 0, -1, b"dims_tpl")
rank = len(dims_tpl)
require_tuple(max_dims_tpl, 1, rank, b"max_dims_tpl")
try:
dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(dims_tpl, dims, rank)
if max_dims_tpl is not None:
max_dims = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(max_dims_tpl, max_dims, rank)
H5Sset_extent_simple(self.id, rank, dims, max_dims)
finally:
efree(dims)
efree(max_dims)
@with_phil
def set_extent_none(self):
"""()
Remove the dataspace extent; typecode changes to NO_CLASS.
"""
H5Sset_extent_none(self.id)
# === General selection operations ========================================
@with_phil
def get_select_type(self):
""" () => INT select_code
Determine selection type. Return values are:
- SEL_NONE
- SEL_ALL
- SEL_POINTS
- SEL_HYPERSLABS
"""
return <int>H5Sget_select_type(self.id)
@with_phil
def get_select_npoints(self):
"""() => LONG npoints
Determine the total number of points currently selected.
Works for all selection techniques.
"""
return H5Sget_select_npoints(self.id)
@with_phil
def get_select_bounds(self):
"""() => (TUPLE start, TUPLE end)
Determine the bounding box which exactly contains
the current selection.
"""
cdef int rank
cdef hsize_t *start = NULL
cdef hsize_t *end = NULL
rank = H5Sget_simple_extent_ndims(self.id)
if H5Sget_select_npoints(self.id) == 0:
return None
start = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
end = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
try:
H5Sget_select_bounds(self.id, start, end)
start_tpl = convert_dims(start, rank)
end_tpl = convert_dims(end, rank)
return (start_tpl, end_tpl)
finally:
efree(start)
efree(end)
IF HDF5_VERSION >= (1, 10, 7):
@with_phil
def select_shape_same(self, SpaceID space2):
return <bint>H5Sselect_shape_same(self.id, space2.id)
@with_phil
def select_all(self):
"""()
Select all points in the dataspace.
"""
H5Sselect_all(self.id)
@with_phil
def select_none(self):
"""()
Deselect entire dataspace.
"""
H5Sselect_none(self.id)
@with_phil
def select_valid(self):
"""() => BOOL
Determine if the current selection falls within
the dataspace extent.
"""
return <bint>(H5Sselect_valid(self.id))
# === Point selection functions ===========================================
@with_phil
def get_select_elem_npoints(self):
"""() => LONG npoints
Determine the number of elements selected in point-selection mode.
"""
return H5Sget_select_elem_npoints(self.id)
@with_phil
def get_select_elem_pointlist(self):
"""() => NDARRAY
Get a list of all selected elements. Return is a Numpy array of
unsigned ints, with shape ``(<npoints>, <space rank)``.
"""
cdef hsize_t dims[2]
cdef cnp.ndarray buf
dims[0] = H5Sget_select_elem_npoints(self.id)
dims[1] = H5Sget_simple_extent_ndims(self.id)
buf = create_numpy_hsize(2, dims)
H5Sget_select_elem_pointlist(self.id, 0, dims[0], <hsize_t*>buf.data)
return buf
@with_phil
def select_elements(self, object coords, int op=H5S_SELECT_SET):
"""(SEQUENCE coords, INT op=SELECT_SET)
Select elements by specifying coordinates points. The argument
"coords" may be an ndarray or any nested sequence which can be
converted to an array of uints with the shape::
(<npoints>, <space rank>)
Examples::
>>> obj.shape
(10, 10)
>>> obj.select_elements([(1,2), (3,4), (5,9)])
A zero-length selection (i.e. shape ``(0, <rank>)``) is not allowed
by the HDF5 library.
"""
cdef cnp.ndarray hcoords
cdef size_t nelements
# The docs say the selection list should be an hsize_t**, but it seems
# that HDF5 expects the coordinates to be a static, contiguous
# array. We simulate that by creating a contiguous NumPy array of
# a compatible type and initializing it to the input.
hcoords = create_hsize_array(coords)
if hcoords.ndim != 2 or hcoords.shape[1] != H5Sget_simple_extent_ndims(self.id):
raise ValueError("Coordinate array must have shape (<npoints>, %d)" % self.get_simple_extent_ndims())
nelements = hcoords.shape[0]
H5Sselect_elements(self.id, <H5S_seloper_t>op, nelements, <hsize_t*>hcoords.data)
# === Hyperslab selection functions =======================================
@with_phil
def get_select_hyper_nblocks(self):
"""() => LONG nblocks
Get the number of hyperslab blocks currently selected.
"""
return H5Sget_select_hyper_nblocks(self.id)
@with_phil
def get_select_hyper_blocklist(self):
"""() => NDARRAY
Get the current hyperslab selection. The returned array has shape::
(<npoints>, 2, <rank>)
and can be interpreted as a nested sequence::
[ (corner_coordinate_1, opposite_coordinate_1), ... ]
with length equal to the total number of blocks.
"""
cdef hsize_t dims[3] # 0=nblocks 1=(#2), 2=rank
cdef cnp.ndarray buf
dims[0] = H5Sget_select_hyper_nblocks(self.id)
dims[1] = 2
dims[2] = H5Sget_simple_extent_ndims(self.id)
buf = create_numpy_hsize(3, dims)
H5Sget_select_hyper_blocklist(self.id, 0, dims[0], <hsize_t*>buf.data)
return buf
@with_phil
def select_hyperslab(self, object start, object count, object stride=None,
object block=None, int op=H5S_SELECT_SET):
"""(TUPLE start, TUPLE count, TUPLE stride=None, TUPLE block=None,
INT op=SELECT_SET)
Select a block region from an existing dataspace. See the HDF5
documentation for the meaning of the "block" and "op" keywords.
"""
cdef int rank
cdef hsize_t* start_array = NULL
cdef hsize_t* count_array = NULL
cdef hsize_t* stride_array = NULL
cdef hsize_t* block_array = NULL
# Dataspace rank. All provided tuples must match this.
rank = H5Sget_simple_extent_ndims(self.id)
require_tuple(start, 0, rank, b"start")
require_tuple(count, 0, rank, b"count")
require_tuple(stride, 1, rank, b"stride")
require_tuple(block, 1, rank, b"block")
try:
start_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
count_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(start, start_array, rank)
convert_tuple(count, count_array, rank)
if stride is not None:
stride_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(stride, stride_array, rank)
if block is not None:
block_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
convert_tuple(block, block_array, rank)
H5Sselect_hyperslab(self.id, <H5S_seloper_t>op, start_array,
stride_array, count_array, block_array)
finally:
efree(start_array)
efree(count_array)
efree(stride_array)
efree(block_array)
@with_phil
def is_regular_hyperslab(self):
"""() => BOOL
Determine whether a hyperslab selection is regular.
"""
return <bint>H5Sis_regular_hyperslab(self.id)
@with_phil
def get_regular_hyperslab(self):
"""() => (TUPLE start, TUPLE stride, TUPLE count, TUPLE block)
Retrieve a regular hyperslab selection.
"""
cdef int rank
cdef hsize_t* start_array = NULL
cdef hsize_t* count_array = NULL
cdef hsize_t* stride_array = NULL
cdef hsize_t* block_array = NULL
cdef list start = []
cdef list stride = []
cdef list count = []
cdef list block = []
cdef int i
rank = H5Sget_simple_extent_ndims(self.id)
try:
start_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
stride_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
count_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
block_array = <hsize_t*>emalloc(sizeof(hsize_t)*rank)
H5Sget_regular_hyperslab(self.id, start_array, stride_array,
count_array, block_array)
for i in range(rank):
start.append(start_array[i])
stride.append(stride_array[i])
count.append(count_array[i])
block.append(block_array[i])
return (tuple(start), tuple(stride), tuple(count), tuple(block))
finally:
efree(start_array)
efree(stride_array)
efree(count_array)
efree(block_array)