forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_env_details.py
109 lines (87 loc) · 3.01 KB
/
collect_env_details.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diagnose your system and show basic information
This server mainly to get detail info for better bug reporting.
"""
import os
import platform
import re
import sys
import numpy
import torch
import tqdm
sys.path += [os.path.abspath('..'), os.path.abspath('.')]
import pytorch_lightning # noqa: E402
LEVEL_OFFSET = '\t'
KEY_PADDING = 20
def run_and_parse_first_match(run_lambda, command, regex):
"""Runs command using run_lambda, returns the first regex match if it exists"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def get_running_cuda_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'V(.*)$')
def info_system():
return {
'OS': platform.system(),
'architecture': platform.architecture(),
'version': platform.version(),
'processor': platform.processor(),
'python': platform.python_version(),
}
def info_cuda():
return {
'GPU': [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())],
# 'nvidia_driver': get_nvidia_driver_version(run_lambda),
'available': torch.cuda.is_available(),
'version': torch.version.cuda,
}
def info_packages():
return {
'numpy': numpy.__version__,
"pyTorch_version": torch.__version__,
'pyTorch_debug': torch.version.debug,
'pytorch-lightning': pytorch_lightning.__version__,
'tqdm': tqdm.__version__,
}
def nice_print(details, level=0):
lines = []
for k in sorted(details):
key = f'* {k}:' if level == 0 else f'- {k}:'
if isinstance(details[k], dict):
lines += [level * LEVEL_OFFSET + key]
lines += nice_print(details[k], level + 1)
elif isinstance(details[k], (set, list, tuple)):
lines += [level * LEVEL_OFFSET + key]
lines += [(level + 1) * LEVEL_OFFSET + '- ' + v for v in details[k]]
else:
template = '{:%is} {}' % KEY_PADDING
key_val = template.format(key, details[k])
lines += [(level * LEVEL_OFFSET) + key_val]
return lines
def main():
details = {
"System": info_system(),
'CUDA': info_cuda(),
'Packages': info_packages(),
}
lines = nice_print(details)
text = os.linesep.join(lines)
print(text)
if __name__ == '__main__':
main()