diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000..261eeb9
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000..a62d90d
--- /dev/null
+++ b/README.md
@@ -0,0 +1,21 @@
+# DeTexD: A Benchmark Dataset for Delicate Text Detection
+
+This is the official repository for [DeTexD paper](TODO). Here you can find scripts used in the paper to evaluate models.
+
+See also: [DeTexD dataset](https://huggingface.co/datasets/grammarly/detexd-benchmark), [detexd-roberta-base model](https://huggingface.co/grammarly/detexd-roberta-base).
+
+## Install
+
+```sh
+pip install -r requirements.txt
+```
+
+## Usage
+
+Run `evaluate_detexd_roberta.py` to get the published model (grammarly/detexd-roberta-base) results on published dataset (grammarly/detexd-benchmark).
+
+Run `founta_basile_comparison.ipynb` to reproduce results for models comparison from the paper. Note that you need to acquire the datsets because they have separate licences.
+
+Run `country_bias.ipynb` to reproduce country bias analysis.
+
+Run `compare_hatebert.ipynb` to reproduce hatebert models comparison.
diff --git a/compare_hatebert.ipynb b/compare_hatebert.ipynb
new file mode 100644
index 0000000..89defa2
--- /dev/null
+++ b/compare_hatebert.ipynb
@@ -0,0 +1,256 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "c1e3646c-fe09-45ad-96a3-28b12be8abb5",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Dataset({\n",
+ " features: ['text', 'annotator_1', 'annotator_2', 'annotator_3', 'label'],\n",
+ " num_rows: 1023\n",
+ "})\n",
+ "label\n",
+ "0 687\n",
+ "1 336\n",
+ "Name: count, dtype: int64\n"
+ ]
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "dataset = load_dataset(\"grammarly/detexd-benchmark\", split='test')\n",
+ "print(dataset)\n",
+ "print(dataset.to_pandas().label.value_counts())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "444670f0",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# Download hatebert models\n",
+ "# https://arxiv.org/pdf/2010.12472.pdf\n",
+ "# https://osf.io/tbd58/\n",
+ "!wget https://files.de-1.osf.io/v1/resources/tbd58/providers/osfstorage/?zip= -O hatebert.zip\n",
+ "!mkdir hatebert\n",
+ "!unzip hatebert.zip -d hatebert\n",
+ "!rm hatebert.zip\n",
+ "\n",
+ "!unzip hatebert/HateBERT_fine_tuned_models/HateBERT_abuseval.zip -d hatebert/HateBERT_fine_tuned_models\n",
+ "!unzip hatebert/HateBERT_fine_tuned_models/HateBERT_hateval.zip -d hatebert/HateBERT_fine_tuned_models\n",
+ "!unzip hatebert/HateBERT_fine_tuned_models/HateBERT_offenseval.zip -d hatebert/HateBERT_fine_tuned_models\n",
+ "!rm hatebert/HateBERT_fine_tuned_models/HateBERT_abuseval.zip\n",
+ "!rm hatebert/HateBERT_fine_tuned_models/HateBERT_hateval.zip\n",
+ "!rm hatebert/HateBERT_fine_tuned_models/HateBERT_offenseval.zip"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "11fbe846",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from transformers import pipeline\n",
+ "from sklearn.metrics import precision_recall_fscore_support\n",
+ "from tqdm.auto import tqdm\n",
+ "from sklearn.metrics import precision_recall_curve, f1_score\n",
+ "import numpy as np\n",
+ "from transformers.pipelines.pt_utils import KeyDataset\n",
+ "import pandas as pd\n",
+ "\n",
+ "metrics = []\n",
+ "for name in tqdm(['hatebert/HateBERT_fine_tuned_models/HateBERT_abuseval',\n",
+ " 'hatebert/HateBERT_fine_tuned_models/HateBERT_hateval',\n",
+ " 'hatebert/HateBERT_fine_tuned_models/HateBERT_offenseval']):\n",
+ " pipe = pipeline(\"text-classification\", model=name, device=0, batch_size=8)\n",
+ " pipe.model.config.id2label = [0, 1]\n",
+ " preds = tqdm(pipe(KeyDataset(dataset, 'text'), truncation=True, top_k=None), total=len(dataset))\n",
+ " scores = np.array([next(p['score']\n",
+ " for p in pr if p['label'] == 1)\n",
+ " for pr in preds])\n",
+ "\n",
+ " precision, recall, thresholds = precision_recall_curve(dataset['label'], scores)\n",
+ " f_scores = 2*(precision*recall)/(precision+recall)\n",
+ " optimal_threshold_index = np.argmax(f_scores)\n",
+ " optimal_threshold = thresholds[optimal_threshold_index]\n",
+ " for tag, threshold in [('', 0.5), ('_opt', optimal_threshold)]:\n",
+ " preds = scores > threshold\n",
+ " metrics.append((name + tag,) + precision_recall_fscore_support(dataset['label'], preds, average='binary')[:-1])\n",
+ " \n",
+ "metrics = pd.DataFrame(metrics, columns=['model', 'precision', 'recall', 'f1'])\n",
+ "metrics.model = metrics.model.str.split('/').str[-1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "4a738076",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " model | \n",
+ " precision | \n",
+ " recall | \n",
+ " f1 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " HateBERT_abuseval | \n",
+ " 86.7% | \n",
+ " 11.6% | \n",
+ " 20.5% | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " HateBERT_abuseval_opt | \n",
+ " 57.0% | \n",
+ " 70.2% | \n",
+ " 62.9% | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " HateBERT_hateval | \n",
+ " 95.2% | \n",
+ " 6.0% | \n",
+ " 11.2% | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " HateBERT_hateval_opt | \n",
+ " 41.1% | \n",
+ " 86.0% | \n",
+ " 55.6% | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " HateBERT_offenseval | \n",
+ " 75.4% | \n",
+ " 31.0% | \n",
+ " 43.9% | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " HateBERT_offenseval_opt | \n",
+ " 60.1% | \n",
+ " 72.6% | \n",
+ " 65.8% | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "metrics.style.format('{:.1%}', subset=['precision', 'recall', 'f1'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "e9e46544-c16a-4963-8a53-23187dca753a",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "570e34a01db24d98851e86dfc70534b0",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/2805 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "{'precision': '48.3%', 'recall': '96.4%', 'f-score': '64.3%'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# evaluate HateBERT on HatEval (Basile et al., 2019) (reported f-score was .645±.001)\n",
+ "# run this first: founta_basile_comparison.ipynb\n",
+ "import datasets\n",
+ "\n",
+ "df = pd.read_csv('basile_data/preds.csv')\n",
+ "pipe = pipeline(\"text-classification\", model='hatebert/HateBERT_fine_tuned_models/HateBERT_hateval', device=0, batch_size=8)\n",
+ "pipe.model.config.id2label = [0, 1]\n",
+ "preds = tqdm(pipe(KeyDataset(datasets.Dataset.from_pandas(df), 'text'), truncation=True), total=len(df))\n",
+ "preds = [p['label'] for p in preds]\n",
+ "df['hateval_pred'] = preds\n",
+ "df.to_csv('basile_data/preds.csv', index=False)\n",
+ "print(dict(zip(['precision', 'recall', 'f-score'],\n",
+ " [f'{x:.1%}' for x in precision_recall_fscore_support(df.real, preds, average='binary')[:-1]])))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "6cd7bf5e",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# Note, there's a mismatch with the paper: 64.3% != .645\n",
+ "# possible reasons?\n",
+ "# 1) some floating-point fluctuations, different versions of torch, etc\n",
+ "# 2) two positive classes are treated separately"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/country_bias.ipynb b/country_bias.ipynb
new file mode 100644
index 0000000..7d90e2d
--- /dev/null
+++ b/country_bias.ipynb
@@ -0,0 +1,168 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "fda0c8aa-a0b6-41e8-93b4-497be759ecb3",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Xformers is not installed correctly. If you want to use memorry_efficient_attention to accelerate training use the following command to install Xformers\n",
+ "pip install xformers.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "5504c7a931a749bc8edf42704de97813",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[0.003737384220585227, 0.791613906621933]"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# loading model\n",
+ "from evaluate_detexd_roberta import predict_binary_scores\n",
+ "from transformers import pipeline\n",
+ "\n",
+ "classifier = pipeline(\"text-classification\", model=\"grammarly/detexd-roberta-base\", device=0, batch_size=8)\n",
+ "predict_binary_scores(classifier, ['hello', 'fuck'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "e09c7684-9f72-4939-b426-6755a8f3ab83",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# idea found here: https://colab.research.google.com/gist/ageron/fb2f64fb145b4bc7c49efc97e5f114d3/biasmap.ipynb#scrollTo=ac6a454f\n",
+ "from urllib.request import urlretrieve\n",
+ "\n",
+ "url = 'https://datahub.io/core/geo-countries/r/countries.geojson'\n",
+ "path = urlretrieve(url, 'countries.geojson')[0]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "8a894872-5c8d-4d99-9798-f1f2c1bfe067",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import json\n",
+ "\n",
+ "countries_json = json.load(open(path))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "a6a4fc40-b751-4a2a-a558-9276ffd42d8b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "3adcb0f4f66f4a85a73a124adb212ee3",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/255 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "texts = []\n",
+ "country_names = []\n",
+ "for feature in countries_json[\"features\"]:\n",
+ " country_name = feature[\"properties\"][\"ADMIN\"]\n",
+ " country_names.append(country_name)\n",
+ " texts.append(f'Unfortunately, the incident happened in {country_name}.')\n",
+ "\n",
+ "results = predict_binary_scores(classifier, texts)\n",
+ "countries_df = pd.DataFrame({\"Country\": country_names,\n",
+ " \"Score\": results})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "6f8cad0f-536f-48b1-98f8-29ab41287ba3",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAH0CAYAAADfWf7fAAAgAElEQVR4XuydB5hdRfmH31Nu3d6yJcmm90Yg0jtIF1AEKSIKFpAWigr8QRSQLiBIUxABKYYO0ntvIZAAIb0nu9nebj/l/8ysCSG0TXY3m1y/edzHsHvavDP3nt988xXD930faUJACAgBISAEhIAQEAJCIEsJGCJ4s3RkpVtCQAgIASEgBISAEBACmoAIXpkIQkAICAEhIASEgBAQAllNQARvVg+vdE4ICAEhIASEgBAQAkJABK/MASEgBISAEBACQkAICIGsJiCCN6uHVzonBISAEBACQkAICAEhIIJX5oAQEAJCQAgIASEgBIRAVhMQwZvVwyudEwJCQAgIASEgBISAEBDBK3NACAgBISAEhIAQEAJCIKsJiODN6uGVzgkBISAEhIAQEAJCQAiI4JU5IASEgBAQAkJACAgBIZDVBETwZvXwSueEgBAQAkJACAgBISAERPDKHBACQkAICAEhIASEgBDIagIieLN6eKVzQkAICAEhIASEgBAQAiJ4ZQ4IASEgBISAEBACQkAIZDUBEbxZPbzSOSEgBISAEBACQkAICAERvDIHhIAQEAJCQAgIASEgBLKagAjerB5e6ZwQEAJCQAgIASEgBISACF6ZA0JACAgBISAEhIAQEAJZTUAEb1YPr3ROCAgBISAEhIAQEAJCQASvzAEhIASEgBAQAkJACAiBrCYggjerh1c6JwSEgBAQAkJACAgBISCCV+aAEBACQkAICAEhIASEQFYTEMGb1cMrnRMCQkAICAEhIASEgBAQwStzQAgIASEgBISAEBACQiCrCYjgzerhlc4JASEgBISAEBACQkAIiOCVOSAEhIAQEAJCQAgIASGQ1QRE8Gb18ErnhIAQEAJCQAgIASEgBETwyhwQAkJACAgBISAEhIAQyGoCInizenilc0JACAgBISAEhIAQEAIieGUOCAEhIASEgBAQAkJACGQ1ARG8WT280jkhIASEgBAQAkJACAgBEbwyB4SAEBACQkAICAEhIASymoAI3qweXumcEBACQkAICAEhIASEgAhemQNCQAgIASEgBISAEBACWU1ABG9WD690TggIASEgBISAEBACQkAEr8wBISAEhIAQEAJCQAgIgawmIII3q4dXOicEhIAQEAJCQAgIASEgglfmgBAQAkJACAgBISAEhEBWExDBm9XDK50TAkJACAgBISAEhIAQEMErc0AICAEhIASEgBAQAkIgqwmI4M3q4ZXOCQEhIASEgBAQAkJACIjglTkgBISAEBACQkAICAEhkNUERPBm9fBK54SAEBACQkAICAEhIARE8MocEAJCQAgIASEgBISAEMhqAiJ4s3p4pXNCQAgIASEgBISAEBACInhlDggBISAEhIAQEAJCQAhkNQERvFk9vNI5ISAEhIAQEAJCQAgIARG8MgeEgBAQAkJACAgBISAEspqACN6sHl7pnBAQAkJACAgBISAEhIAIXpkDQkAICAEhIASEgBAQAllNQARvVg+vdE4ICAEhIASEgBAQAkJABK/MASEgBISAEBACQkAICIGsJiCCN6uHVzonBISAEBACQkAICAEhIIJX5oAQEAJCQAgIASEgBIRAVhMQwZvVwyudEwJCQAgIASEgBISAEBDBK3NACAgBISAEhIAQEAJCIKsJiODN6uGVzgkBISAEhIAQEAJCQAiI4JU5IASEgBAQAkJACAgBIZDVBETwZvXwSueEgBAQAkJACAgBISAERPDKHBACQkAICAEhIASEgBDIagIieLN6eKVzQkAICAEhIASEgBAQAiJ4ZQ4IASEgBISAEBACQkAIZDUBEbxZPbzSOSEgBISAEBACQkAICAERvDIHhIAQEAJCQAgIASEgBLKagAjerB5e6ZwQEAJCQAgIASEgBISACF6ZA0JACAgBISAEhIAQEAJZTUAEb1YPr3ROCAgBISAEhIAQEAJCQASvzAEhIASEgBAQAkJACAiBrCYggjerh1c6JwSEgBAQAkJACAgBISCCV+aAEBACQkAICAEhIASEQFYTEMGb1cMrnRMCQkAICAEhIASEgBAQwStzQAgIASEgBISAEBACQiCrCYjgzerhlc4JASEgBISAEBACQkAIiOCVOSAEhIAQEAJCQAgIgSwjMH3mXG69+wlmz19Ce0eckqJ89t9jO07/xQ8JBQNZ1ttv744I3m9nJEcIASEgBISAEBACQmCLIbB4WQ2H/fz3/PzoAzl4353IiYaZu3A5F151B9tOHsPFvz1+i+lLTz2oCN6eIinXEQJCQAgIASEgBITAZkDgkadf58+3TOONx274wtN8MncxK2sa2Hf37+jfL12xmouuvZOPPllAcVE+xx+5P0cdupf+W83qRi75y918+Ml8goEAW08YyflTj6W4MI+X3vyQK2+8jx8etBs3/fNR7r/lQkYOHcDdDz7H/Y+9pM/tX1HKuacdw45Txm8GREAE72YxDPIQQkAICAEhIASEgBDoGQIfz1nMkSf+kQvPPI7vH7ArAdv60oU9z+eQn57HDlPGc9JxB6Oswr/67Z+57qJT2XHKOL5//AWMGzWY8077MclUmqm//yv5eVFuvHQqr7/7MWdfdJN2kTjxuIMpKSrg+Venc9kN/+LWK89i1LBqXnt3JmdceCOP//NSqvv365mOdeMqIni7AU9OFQJCQAgIASEgBITA5khg2uMv85fbH8J1PbaZOJIpE0fx3d2mMKCyTD/uR58u4CenXcpbj99Ibk5E/04J2X6lhaRSaY4++RLeePQGCgty9d/efP8TLYg/ePZvvPfhHE783Z958YFrqCgr1n8//owrmDRuOKf//LC1ONTxE8cM5eSffb/PEYng7fMhkAcQAkJACAgBISAEhEDPE8g4LjM/XcD7M+fw5nufMOuzhUz9xQ85/sgDeOK5t7jq5vt57ZHrv3TjJ198R7ssvPrwX9b+Tbkp7P2js3jqX1ewbGUdp/7fdXz0wu1r/67+po5Zvx28z05cdt4ver5zG3hFEbwbCEwOFwJCQAgIASEgBITAlkhg2hOvcPG1d2qRqwTw5X+990t+vqpf3yR4H73jEmrrmjnjwhuY/szf1mI46CfncuQhe/Ljw767WaIRwbtZDos8lBAQAkJACAgBISAENo7AHfc/TSQS0gJ03aYyNfzghAt47v6raWhq5ZiTL9HiVwWiqfbsK++TnxvVLg5H/fpiXn/0eooKOv+mXBqUG8O7T97MB7Pmf0nw/vrca7Uv77oZIJTFt7ysGNM0Nq4jPXiWCN4ehCmXEgJCQAgIASEgBIRAXxN4+KnXuOjauzjjl4ezy3YTyY1GWLqilr/c9hCJZIqHbrsI3/c55GfnM27kYH3cipo6TjrnWq7+/a/ZedvxOq3ZuFFDdNCayuN7xoV/paJfMX++8Nfa13d9C+9r78zUgW1/ufhUdpgyjpmfLuTk867jhktO4ztbje5rJJKloc9HQB5ACAgBISAEhIAQEAI9TEC5Jdz78AssWrqKWCJJWXGhFr+nnvADXYRCNWWBPfeyvzNz9kJKiwv46RH7ccwP9tZ/U1kbLr3+Hj6Zs0hbi3ffcTJnn3gE0Uj4KwWvOudfDz3PP6c9Q2Nzm05L9otjDuKQfXfq4Z5t3OXEwrtx3OQsISAEhIAQEAJCQAgIgS2EgAjeLWSg5DGFgBAQAkJACAgBISAENo6ACN6N4yZnCQEhIASEgBAQAkJACGwhBETwbiEDJY8pBISAEBACQkAICAEhsHEERPBuHDc5SwgIASEgBISAEBACQmALISCCdwsZKHlMISAEhIAQEAJCQAgIgY0jIIJ347jJWUJACAgBISAEhIAQEAJbCAERvFvIQMljCgEhIASEgBAQAkKgKwRaU0O7cliPH1MQWtTj1+ypC4rg7SmSch0hIASEgBAQAkJACGwGBFqTfSR4wyJ4N4Phl0cQAkJACAgBISAEhED2E2iN95HgjYrgzf7ZJT0UAkJACAgBISAEhMBmQKAt1jeCNz9HBO9mMPzyCEJACAgBISAEhIAQyH4CbR19JHhzRfBm/+ySHgoBISAEhIAQEAJCYDMg0N7WN4I3L18E72Yw/PIIQkAICAEhIASEgBDIfgLtrX0keAtE8Gb/7JIeCgEhIASEgBAQAkJgMyDQ3jKsT54ir3Bhn9y3KzeVtGRdoSTHCAEhIASEgBAQAkJgCyHQ0dQ3gje3WATvFjJF5DGFgBAQAkJACAgBIbBlE+ho7CPBWyKCd8ueOfL0QkAICAEhIASEgBDYQgh0NPSR4C0VwbuFTBF5TCEgBISAEBACQkAIbNkEYnV9I3hz+ong3bJnjjy9EBACQkAICAEhIAS2EAKx1X0keMtF8G4hU0QeUwgIASEgBISAEBACWzaBWG0fCd6KLwre19/9mKtvuZ/6hhbGjx7Cpef+gtLigi/Bfebl97jpn4+Szjj0ryzlD2f9lIFV/Xp0ECRLQ4/ilIsJASEgBISAEBACQqBvCcRXDe+TB4hWLVh73/aOOPsd81tuvHSqFrs33vEoS5bXcO0fT/nCs62ub+aQn/0fD/79jwyoLOOf057h9Xdmcfs1v+3RPojg7VGccjEhIASEgBAQAkJACPQtgfjKPhK8/T8XvM++8h4PPfkaf7vqbA1DCeBdvn8a7z15M8FgYC2g6TPncvF1d/HYHX/Sv5u/eAUnnHklrz1yfY9CFMHbDZy1tbUce+yx3biCnCoEhIAQEAJCQAj8LxO4++67qaio6FEEiRV9I3gjAz4XvLfe/QSNza2cd9qP1/Zt1++fxl3Xn8fggZ/3VwnhA489h1uuOJMxIwahzlu8vIYr/u9XPcpEBG83cM6cORP185Of/KQbV5FThYAQEAJCQAgIgf9FAkrsTpw4kUmTJvVo9xPL+kjwVn8ueK/7+4O4rsdZJx6xtm/7HHk2119yGqOHV3+hv/95/m3Ou/zv5ETCRCIh7vzLueLD26MzopsXE8HbTYByuhAQAkJACAiB/2ECvSZ4l/aR4B30ueD927+eoK6hhfOnfr4TvvMhp3LvTedT3b987ajPW7SCk8+7jjuvO4eqilKefeV9rr/9IZ648zJM0+ix2SEW3m6gFMHbDXhyqhAQAkJACAiB/3ECvSV4k0v6RvCGB38ueJ9/bTp3P/icdmFQTQWnHfDj3/HuUzdjW9bakb/rgWf5ZM5irrzgxLW/22rvE3jmvquoKCvusRkigrcbKEXwdgOenCoEhIAQEAJC4H+cQK8J3kV9JHiHfi54Y/Ek+xx1Nn++8NdMmTSKS6+/h0QixWXn/YJFy2pYWVPPLttN5K3pn3Dh1f/kgVv/QGFBrv7vsy+6WQetrSuMuztVRPB2g6AI3m7Ak1OFgBAQAkJACPyPE+g1wbtwRJ+QDQ+b/4X7KvF6+Q330tDUylbjh3PpOb/Qovbfj73Ec69OX5t6TLk/PPL06/rcvNwov/31UVok92QTwdsNmiJ4uwFPThUCQkAICAEh8D9OoLcEb2pB3wje0PAvCt7NaXhF8HZjNETwdgOenCoEhIAQEAJC4H+cQK8J3nl9JHhHiuDNyiktgjcrh1U6JQSEgBAQAkJgkxDoNcE7t48E7ygRvJtk4mzqm4jg3dTE//fu5/s+hvHFtCypVArTNLFt+0t/25wIrXn2VatWkZOTQ15eHup3b7/9NkOGDOHFF19k+fLlrFixgkwmo3/UcZZl0dTUpP8/EomQTnnk5oV1n9f8tLa26mOrqqooLi6mrKyMESNGMHz4cEKh0OaEQZ5FCAgBIfC1BHpL8Kbn9I3gDY4WwZuV010Eb1YOa690KplMamGXm5u7tqLOww8/zIwZM1i5chWNTY0k4nHwg3h+EsuycR0H0wwRCkRw0+C4GTATYNmQNsFM4+FjGVE8I41hhLENH4c04GhBGA6HUQK5f/8BOE6Gfffdl5EjRzJu3Lge6+fHH3/MI488wt57781FF12E6/g4bloL1jXNSNtgunimD/iYhonjOZ3HeGghHIqVgGOSCSTww0l8w8MwfHBscMGwTUwL/XvfdPWlDcPCV3/00Me4po9lGZSWlVFSUkK/sjItivfcc0+GDh3aY32WCwkBISAEeoJArwne2X0keMeK4O2JebHZXUME72Y3JH32QMoiuWzZMm2xVP9ubm6mpaWF5uYWFiyYTyqZUvIMw1Ri1Sa/KJe2WAO+62P4Bp7jg2XgZwJ4HSFoGordrxby6sAycT7YAywXo2gRVlk9zsph4FkY4TZYPR4/bznKEGwO+Qw8AyPgY7SV4XspvIwBmUKonIOhrKQe5OQXc+ZvTyaRSLBy5Urq6upwXZd0Ok17e7u2ti5atITSaAXFZYXk5OZQU7uSwrJ8li1dRVtLKwE3TNCOEC0MUteySgtZ1R/P89QjaOG5xjpteUFcIw2JMH4giZfxsRorCOb4BJtLKVo9klCiiCVDnscKmAS8CGkrTsCJYKfCxApXkQnFMTyTnOYBEErj+BnMYCc/13JI5TdCKoBpqkex8AJpsJJgwdQzp3LggQfy/PPPs/vuuxMIdNZxV0JbjVMwGNQLBGlbDgE1z5TFX5oQ2JIJ9JbgzXzaN4I3ME4E75Y8H7/22UXwZuWwfmun1Ha62pZXYlFZD5Wl9oN3ZuDbWkJpa6PpB3EzJlZQWWVNcBx89X9NObB0RwLVn0FhHU7KIhAO4yZdjGASr24onqqQU7wKI9qBv2wc+N+yRW+4EKnDmvgqhhvEsEwwXNy0hRlJ4qcDmHYQy7Y6DaHpNgzLwPJD5HnldARrcf00pGwM1ybYXEJ+8xBaS+ZTtmobVhRNxx1Yi5UJYgTBDPl4OLqf/RbshN2aTzrcjBfOkCxaTSLagGcl8U2P/PlbYUVcTNemeOlkTEwli4kFWsjNFH0r69VD3qdtwFwt9rUJ1zPxkzZBI0cLXSWoU2ZMi2hUt5X3hxfQ1vFIvExbgFORDrbafhgLPltMa0erNpB7viIBJA2igRI8x9W/0y4TQZ+C/AJGjB/G4Ud9n7Fjx37rc8oB3SegFllrFiLrX23p0qU0NDToBcuSJUtYungpnu8zathIjj3+WCZMmKDLvN9y861g+AQDYf564/V6Ead2OTanpnZc1oj19d1v1PO+//77ejeiX79+m9Njy7P0EoFeE7yfjOylJ/7mywbGz+uT+3blppKloSuUvuYYEbzdgLcFnvrUU0/x17/eTCLWgWEqwWhBeyXk1pBXVEh7rAXH6dym97Tl1sQzfO1ri+9qLax0loGtt+R9x8RdMRQaBkMkBgVLMfsvx1LKzVOWK5PM/K2h7hu24s0ExvCZWOVLlLkSX4tAJUjVLV3skK1vbaSDGAFDW38LwiWkvRhOfZjqWfsruzOpYCvt5QtJ5tdDyKX/jM7fa00YbKGjcDmldRPWjloy2ExH0UpKV4//ypFMm0k8I0PYzevWSDtmiky0nXBHydrnWf+CbcWLiZUtI5DIJ5DIw2zPo776Y5yiGu3aEYrkEkmX0laXgqIOQqsrcAtayYTbsGsqKOsYgedDy6BPwErjGR5uKMGY8SM5/uSf6Dr3W1JT7jP19fU8/vjj7LbbbowfP5758+freVhUVERhYWGfdOf2228nFovp3YTa2lrta638rmfNmqV3FRobG5k0aRLnnHMO5eWdZUdvu+02HnvscTo62rU1Xi1w1KJECUb1b/VZUz+hYBjXdRg5aiQtLa1kYhkCRohkPM2E74zj3At+22N9vvyPV7Jk6TK23257jv35UV9w3enKTU477TRWLF9JNBLh6muu5g8X/JHalfWYSVvvsGQCSSJuAV44QWFFAUcddST7779/Vy4tx2yBBHpN8M7qI8E7UQTvFjgNv/2RRfB+O6Mt8Qjlk/rZZ58xePBgtt12W92FY445Rr+kVVMvW23Ife8QjEwemCm8vOUERs7HNFu1JVf/KNWpfFBNJR19DLXP7wcwvAxuQKlQJZpNLCsHX2lREniuo62gTmM5OGH8umpo6Q+GshRnlAMreGGMcS9BKohRWIsZdDESVQTyEwysLmfRsjk4KY9AukBfy40pXweTkvnbkipbRsWK7UgHYwTSYUy0WTqrWlvxUlaPeIf8lcPIaxhCNFnCwikP4USaMZX1W7kRKzGvxlANkgkDS4aT1y/IDjtvr8dcBb9tLk3NNyUUV69erUWhErBKLKrF1bRp07QQnD17NtOnT9euKMrtw7QN3UU1VU3D0uJQeXcrq7jvQH5REcWlBeTn53H44Yez8847f6m79913H/PmzSMeSzJ82Ah+8avj1x6jnkVZXDfEF/y7e+/TuZBTCwr94fDwPV8vHnXz1VIwwCln/JqH7nsCy/RYtnqpttJaZmcfHNfV/t+G0fkBMy0bGwvbCmhBP2zoCILRAGbGIpwXYvSEETpAcuutt+6x4VQCRY3Hdtttx+TJkzf4uvF4nE8//VQLezV26iccKybaUoJnmNjKrd12iEUbSIZaqaiqxDQNtt9uO0499dTNOlB1g2HICfSW4HVm9o3gtSeJ4M3KaS2Cd8sc1jlz5rBo0SJtmVGZA0aPHq0j/deI2TNPPZ8lSxcRCtr84+5b9ZbogQccQjqd1MeYGLhtEbzaKsxoQgdR4UWgZSC0VkKkBqPqY4yQj5tXp0WlETDB9XGXjMJIlRAoWY3ZrwnHbMHTu/ER/I4SvM+U8PBg4PsYBcvB9vBXV2MUtGCWtOC7SiSoAC5bCwKlVwdWVXPBH87XL3bVLxU4Vl/bSCqTxjRsfMMhtHwg/RfthOVsXtu7m2oGKYG/ePv7P3dbwGbAwP4cdMgBbLXVVgwbNmxTPUqX76P8wI844kc4jkum3SOca+OQwTJtTD8XX1nRvQxGm9r6TuHntOjFlZ/xIagCAy1tFVeCyllRjk8Sw8nXYt+1HaziOizb4/Aff5+TTjrpC8+lRPb111+vRa2yCivLqwpKXNNqamq0n/qGunso8frAAw/w8suvsHjxYiZMGK+tvO++/R6O6xAMBLn6mqt0EKT63KnPZUVFhZ7Xn3zyiQ76VBZqte2/amUNueECtt9lCkceeSSlpaU9LgZVH0895TRyQwX86tQTNkrgftWAX3/tX3nk8Ye+8Ccl4k0nSGGqCj9uYLgBGsvmkGsUkev2oyGzHD8vzTNPP62t9ypWQH1//eAHP/haV5AuTzY5sM8I9Jrg/aiPBO9WInj7bDL15o1F8PYm3Q2/thqPl19+WW+Pqm1PZX1SgUrr+wUe8N3DSDltWle6KQ+SHoHiAsJWlJLKEHt9d0+9Faz8Bu+44w6d8kq9TJVP3T3/uheTMMlMqz4/EFL+okqBGlhOLpn3dwanCD+8AHPMdLyOMEZ+AjvcaVF0TZV5Qdldg9oM7PgJvDlTMCwf2sohmMIe94r2B1auCUqsrLF+KWvxDjvsoC1Lqo9r+qnEgAq8WrRgCWY6jOOklImIQFi5MwSJfjyK8tbRGw40S85IhtqoHfAeVn6G1uhSJkwcT1NTM9t9Z3umnnnaZttLJTp/eOiPaGpr6JwCjQV4HXnYkWbcxuEE8lbiVbaQXNgPq2kygfJ5GMWrMfI73UlUU9bTQQOH0NbahpeKYNumFkk5hTbVQyp1xo6DDjqIU085HcdJU1RYytjxozjuuOM2Wy6b8sHUGNx00036c6jcCnrK8q92kN555x2effZZbalX1unW5jZoixAyc3AzGSLkk0lkyGmtIBltorlyIVUDKqlZWYObCpCTzCGV246dCkGeS/XQ/lxxxRV95rKyKcclm+7Va4J3Rh8J3q1F8GbT/FzbFxG8fTusyvdP+SYqcfrLn59Ee1srjhKfah+XAIbl8bvzztapuNY09eJS1qljjzpOb60qH1vTtTDTxZAJ4jtpVPav/KEue+y9C48+8iimE8DPRLECDn44w5TJU6ge0p+HH3pEuywoVwV31TCMglUQTEBLPl5uKxkrrQWG0Z4DAQfHT2GGPKzW/hhGBr+oBW/BKIzV62y3Kqttv/cg6BCwwrgD5mm3BPW/EUNHcsllF3HEEUdgOjbReAWGZ+O0mOQm+5Fyk5Q2jdXbxqYX6PQF/q8fbt+OVN/d3cNj4VaPQHErOQUFtDY1akGgtrjPPvtsned3c2733P1v/nnXbdrKqxdKRj6kMvihpE4zZxoBPD+DXzcEf/5OMOxF7PJ6rKD934WPie8YhML5jB5bzQEH7a9dNpTVVmUVuf4vN3PpZX/kzjvvpKCgQGerUH9XwZjSNg2Bjo4OZn80FysC1dXVOtPLggULUMGxajdKLdiVIJ43Zx5tK9I6a0nILcCMuJAysAIBYmYTfiDDwUftx8tvvKQX52qOy8Jl04xhd+7SW4LX/aBvBK+1jQje7syHzfZcEby9PzQfffSRLlCgRKryT1yyZCnJmMeue2ynhctTTzxLMBSipa4RI1OCn1Zm13bMfJeqimpuvf1GotHo2gdV17r+uhvZZpspDBsxSL9g1Pbo88+9pLdUDSz8dC6hoMH3vr83vunwwAOP4mUyeJ6vfem0P2TaIL+4iHMvOFO/nN5/90Pmz59HQV4Je+6zk362m266RfvouiojmeUoDY5t2vgqNReGTs2Fm8BLlWK0VHdmIogF8fp/jFUSp6xoIB4ZqiorOeu3pzFo0CCdGeLkk09h2bKlGCrdWAA818N0w5C0MD0bK2iSsZPgBhj+9uFfG+zV+6PX93dYPfxdmvvP0rpfj5vnc8D+3+PD9z7kqusv3yKEnZr3H374obYyKneA6W99gBk0tF+rylSgOpeaNw4CHVRMaeOaa67W8/q73/0ujkrJ3F6E5afwghkMO8MhP/oeKnBK2qYloKzFKruLEqJqoaX+W7luHHbYYTpHtwo2XGNBVn6+arzXpMrT1v6DjyRohSkZkKfdsZS7RWtdB7hqJ8fDUP76Zmegm/rOGzhwIL///e83bSflbhtMoNcE7/Q+ErxTRPBu8CTYEk4Qwds7ozR37lz+PeGnvYUAACAASURBVO0BXnn5FSy/gFC6ilhbE1gxnUHAJY6dY/Cb35zF3XfcR3FJCdvtuDVzZy8gkYwzcFB//aJQL4T5cxew+5676aAz1VRKoLOnnsPihSsZOXYgp5x2Mv3799dBKK+88gpKYKuXi/qdCsxZ47v4ve99T/viWn4Q3+oMtOlXVsKoMSN0ZLWy0qxaXkdjS6P2wfXSKiWDgWn7kAnhztkGc+BM/HACPx3Fq4tg2rmY/Rdjqvy7fgAvGcAPtmphFs3P5z9PPvqVPonKD/KiCy9h/uz51Kr8t16nLbdT1Knbd/ptKjE0+o0TemeQtoCrriyfTrx0PuQntCXfssJkMgnoMDjmtCM54YQTetznc1NgOfpHP6ZmRS22YWmfXr9+AFa/Gk4962QOPfTQtY+g/DyVW45yd3n39RnsssdOHP3jH2khpP528MEHb4rH3WT3WL8qoXIVUH6/r776KiuWrKRmcYPOhx3OCTNq0hDO/b9zNzjDQnc6c9EfLmbBvIX89Lifsee+u+lLqYV8ZWWl/rdajCvL+8UXXUIyleDcs/+PF197ngsvvFBn3VBNfTed+9vzqfuslcKGEeR1lGCmI6wY+yqZYIKU1YHKee0YaYqLithq8lZrM1roYFsgPz9f+6wrVxadQSZL2gcffKBd2lRgX1eqLf7nP//RDPq69ZrgfW9Un3TN2nZun9y3KzeVtGRdofQ1x4jg7Qa8rzhVuSicfvrpWE4IL2bjJ4N4oXYyHRDol9EBWnamACfQhqUjtY3OClwBlUu1jLLKQnbbY3uOPfZY9tlnP5yMR3ruIIIjF3Hg9w7QAS/q5a9cHNTL8Nxzz+1MdaRzw3r/jZhWD+bjp1VUuIfTYTJu27EsW7GARCKFnzEwfQMrU4wbbcBycyFeiZ+/ACXF16RL8lOqCENA+1IGgkFsLxcn6WHkxUh3ZAjlBZVHRWf6MM/Haq/CM9OYkQaMaJAdt92JCy8+9xsT6yvxfumllzJv/nwa1AvRVTxsChaOoXnAJwQ6+uGGW/AzFhgWkWguhrIGp4JEzUJS9Q52Ih8jpgJlhmpL8JpUZD07sn1ztWXjnyVRslwHqqkFinIRGTFqBHM+/ZT/PP2fzS4/64ZQUvNMLdAefPBBlsyr59Af7qezKKxfhvqrrnnHP+6mvqFGu3RsyYUblGhXglFlPFi8aClWKqzSbpBxU/iuiZkJ4RkOdiaEnYkSaS8knddGoqCe4v6F3Hnv7V3i9W3j8swzz+gAMrWQ2GWXXb72cOVzrxbia8ZojQBV43jzzTfra6gMFK7n6kI0ejfJNMgL5xNPqUWbSzheoAuymFjkxMsY8tF+69zPJxaso6n/PDqqlmE7OeTXDNa7Pkrr2p5B3I7RXr2AhNWmv+d23W1XHeTaV03tWClrt/o+fuyxx7RgbWpopbJ/PwYMGKANEcuWrGDb7afo7CSqeqLKUbxuFUf9je373Pn3O/lwxiyuvuGKtXEbivGD0x5h51132Gx3c3pN8L7bR4J3OxG8ffV56tX7iuDtWbwLFy7kxBNPobS4lFW1K3S9hqAd1dv6AXLIKEHpxtZu4yrRm5gxGqNiKVbDWMyq2fh5HVihIGErj3imQX/ZZ2rKsYtaMEIp3GUjMPrP47JrLuFvf/ub9mNUFtNO84lylbVxVBEGVSls9Wjc6DyMfJ9+JZXU1q8kGIzgumnyo6UMH13N0sU1NNfHSTe52IUdGK6JG/QI2CEiwXySTjtFhQU0NTfiOarol4mbUf61EXCCeEYKI7cVT4loFbgGqBfo+l/o30ZaWbPV9qgKhlFf/ovmL2HcxDE6lZra3lY+fSq3qXqpqu1S9YJRaaxW16zGTXtYqmxvSynDZmaP1a8pvJz67Z/TCxRVAY4MRPKjjBw/ikGDBuqFkbKo/a81neZrnbLPW0r/1+zAvPPWe7TWt+kS1jmJUuxMkDhtFDcMJxFuxe3XjutncKwUITOEkeNSWFJA5eAyLUqV28C6GSe603/lhnDIIYcwuHoIo8aM5Mwzz/zC5ZTgeu+993Tg6y233EJLYxuNtc0kO1ThFleLcjccJ5mJEcoUYqZCam1KMtyqKwXmuAWEa/qT31FF7ch3GTB9L/LSnQUpdOltlf9wA1smEGfRVk8RizTo77k//OEPOg5iUzfF5vSTz6awMJ+Zn3xIR2uC8sWTtX9yvLQWv7SZBDECq0poqVhIwAwSbizHy41DXoppD9/Pr35+snYXU1ZyFYypUkmqzB4qGFP9Thk5lOVXZRPZXP31e03wvtM3gcrW9nM29VTq8v3EwttlVF8+UARvN+Ctd+qakrZrEtOrrTaVLkq1GTNmaP+2Z59+ibfeflUXbMgkHGz1ZR9SKbrASapiZintz+snlbgpxAoG8aMqoXs+DjFstxzyW5myzQRi7UlWLKth9PiR/PTnR2qhqKwvV155FZlMGlsFqrkGTjCttwATiTiZZAa3zcKsn4SRu5rAoHYqKwtZPHs5Rt0gzJw41A4lXTIfw2jBahyJGYxAcR0YSagfAE6utrbalXNxlo6FdAEU1sOQtyHscskll3xlTtSeI/3lKyl3jNNOP50li5YSdgtItKQZtGBvosktu9JTOtDG0u0fxDU9bcFX/6usHEBt3SptPRtSPYK//+Pm3kS7ya+tijqoIKdsE/KXX345Tz75JAErRMGy4UQ7ysiNl1AzYAbtpat0qsCK8gFUDill+PBhWvAodyTFoaet2GorfJttttGCqq2tjZ8c9VN+f/H5a3P9Kn/rB6Y9xIKF8/SCMxgIYSRCROKFlDQOxU8HyWst1/5HwXRuZ27tTdDSoQ46chpIhJuJVy7DiSYYOWEw1/31Wn33vlgIKTcOtRj4+43/ZN7MeZQ1jMWORakfOIe8dDHpcFxXiGwJrMDxHSJWLrl2PpUjSvjZz3/KWVN/pwsAhZ38zpzOGGRUsZpAglNPPYVDDut7l4VvG9peE7xv95Hg3UEE77eN+Rb5dxG8PTNse+2xN6SjOsgKN4TpBjurgxU0Qyiug7JCVgHhUISCwgIOOGQPdtppJ71if/j+J7j/wYfwkilMKw8jmKEor4jBI/vpnJnqpaSinVXUuYpAV5ZO5d+lItKVlVP9bt2mrMwqMEhZC1QJUxUwpF5a559/vv79G2+82ekr66kt8nwqK0ppbKvVwWSuek6ziLTbqi1MtlmAk4zhWw520CadSmGZIXLDRURzQjS1tRIJ5BC0gqTcdn5wxPe0T1lv5BPtykip4Ltf/eokPM/BcExGvPlTldK/K6duFse05i6joKOaVruePLeQ9txaVk95Tlt3ldXbzbgEwkHKSyq58rrLNOeu+PptFp3r4kP86677WLmqlt+dc0YXz9h8D1MuO8pt4eEHHqVGLVIMi3BDEaZlkbBiZHI6CFkRho0YzO/O/Y3OQ93bTVkllY/tgQcdwJQpU/TnftWqVdx24z9YVVPDtjtvwzNPP0s0J6IrymmXqbTJ1u8oX/pN/Vnyce0kLf2WUFs9Az+UwQrZZJwUET+PtJ/k4f88oAPc1PfcXf+4h6N/8qMuWULV8aop8a98wTdmx0AZOVSVuZ133IUDDtlPfx///e9/R30Hq2davmCFTr048TsTNGeVZlJ9L6vg3TXGEPUMyk9dxV6ojBZq90pZdffYYw89PltC6zXB+9aYPum+teNnfXLfrtxULLxdofQ1x4jg7Qa8dU796bEnsOjjZZif/nC9l4KDUTobP2NCqhSIQriBQOVi3Nx6puw8WX/5nXjiidp3dv18u2vq1d966628+NzLJDMpYm1JTCcfx01y0hnH6BRfqqmX09TTf8uq5Uu176/hBAnmKV9eFQDmse8h32Xy5K257E+X4ydMzKXb4ytrrR3HLGjEMRu1Jfeq6y7TQWzXX3cLbQ0pvEQALx3BjLRAboxoOEIymcKL5+hsCq7tkhOxaW5oJKiKCRgqCwSEcwO6MMJxP/8R22+/fc+A7sJVVG7QK6+8Ugf8+e0wesYJ2l9wc23LR71Ewmgjp70fsUFzINzpFqKr2qUCxDNxgr6FF3bZfsft+NnPfqYLjUjb/AlcfPHFvPTiS52RmI5FtKOERF699mUtyC/UAacqE8XGNiWirrr4GhYtW8xPjj+aPffcc+2llIhVOx8qYExZiO+66661ok59V6iF84H7HwTxAJZKDWc6uKS1i0HACOsMLAm7FZcMthFg9GtHEPS6V2a7K/308akbMAt3SBOhYoOY14oZMmhtbO6ML4iHsaMmnuOS9BLkF+bgqCIXaQtsH185+6rvINsjZcU44YTjtS+tEptKhKoFotqFO+igg7EyIdJuQvvCZ/wUObm5emcskGNy+hmn6/R26xsU1u+Dylrx3jvTOfX0k79giX/uyRf589V/xnMMommVZcSiI9jEXvvtzu/OP6srKLaYY3pN8L7RR4J3ZxG8W8zk25AHFcG7IbS++lgVMPHys6/gzzhMl9L9yhZZRWDgcvz81Xhqe9qlM1tCWzkJfzmR/glst5hQMEgoYjFlx7HaD1YVKt15lx14/dU38epzdHlfP5LEt5R1wuCf99+uAyBuu/VO/nXXvzCCjrYyqEpWfLAfXsbA3uYlXDuli0CorTUn5uFPPxRr8jvYXgCvvQBVqzVnZAPX3XAFixYt1m4J/ooqjKXKL84kMPkFiqstGhpX6610N+3jvrs/hl8Ihosx+B384iUQyyXgVuHlKxcIVUrYwbcznP27M7WP3ZoURd2n/s1XUO4jKitFJuNgpA2Gv3sctm/r4L7Nrc3b/h/4oc6gNPVCVxa1NdYmbdV1PQYNrtaWc1VCV9rmT0BZ6Q475HBSmQS5rVVYbVFiVct1qr1QIMJZvzmjW0JXzYs7/n4X99x7r/5c68wmGFSWDuSnJx6tC7soN4WOWAc777Izn837lKuvvhr1fa+sjy8+8Ro/Of7HXH/ztQyZuR8FHf07y1QbPra7ZsfIZcmkV2ijjpGzDiLs977YbaycS+3gmaTtFqJ2HiXeEDKxFHZNEZYXJrexjGC602ddufh8uM3dWIE0oz/6EXYyB0ulZDRcMsE4rpmhZsI7uFaaeLheZ34IKdcwI0Ui2KLdg6o/3JPS2EjaC5bQlleHEfEJtEdYPvxt9QWtrbEqEK0rgZTrz0q16FY+25mkq3fAVLpIlTYytyjKLrvupMWxyjShdu7Ud7i618bcZ3P4NPSa4H19bJ90z9pldp/ctys3FQtvVyh9zTEieLsBDzjvvPN467W3Ye620DJci8N1mxdejjnuA3LzwySdFpxFg6B2ErideXV938Uc/To+KZi7D9jtGFs9ialePrZKym7jNAcJDEzgxsCY+T3w8nHyniGyTTvPPPOkFkdqO2zq1LMg7utynkZ9JV7NTp15viIrQaUNG/MyEyZNYsaHM1AZGMJmiLJBpRx4yP7aArLXXnvpF+Lpp51Oek5/gk2fW4vs7Z6HSCPpREa/XI25O0Lz56Vs/e/cg++5+iWUSTtE8sOgskS4OaRbEwT6OVgBk1FDJ3H+RWfr4DPVeto3cV32KmXX7NmzsS2bcHsY4qXktw2mvGHCJvM5/KbZ1ZK/hIaBHxFuGICf20Emvw23sAE36WnrlRVWOWo9FSXIc889J6VXu/dR3WRnz5s3j9/9+kJa3FrK6rdi4OzO3Y0ZO/+N8ZPGcsMNN3T7Wf71r39xz9VPMmThTp2LOM8iHWkjFq4jsHszU886WVdY/Oz9hXoRvM2OW/P++9M7d5GcMKYfIBKOEHNaCBChrKiK9pku+c2DKGrpfbeKrwMQy60jHWwjHC8kE02Q3zTwG1k1VHxKe78VDJn1eWGerzohHWrCsTMEUvn4pkdb6RKKVg/HckNfOlwZBz7coTP7hfp56aWX1gpRFTB7zz336FLIKu1j53e4WnB0+jCv+feF5/2R199+nXy/DKs9TOHykbiBtDJX6GJBNYNm4AZSuDh4nkvYjBJIRzFNWwf6DRwykFv+0f150u2J1sUL9Jrgfa2PBO+uIni7OPRb1mFvvPEGl593Dbm5eaT8BLvvt5NOq6WshOpvyiq3KVadr732Gnf9825GjBqut54OOOAALYbWz0u5OdFVVsRrrrmGl19+Bc8JEfQKSHw0UVs2A1WNYGXw81Zx6NF78OgjT+Ipa6Pl4zfnYuQotRfDqa/EWLh+dHGs0/VhTYUxw4FRT2OXxMh8tCtGrLOClFfwASMOhNvvvGktFpUWTeXsfPv1D6lb0UxiYRnBUYsIUIJjNmAHIyRjbbiugZm2sQvCTJ36Sx2lrZoKYDlk70OgbjhkivBTAWivxDNasHd4Fc93IAb+J/tjOCVr72sNe4tMu7pmEUYgQaZEVVfy8Zfuhl28CqdwPuS4xNuTmKZFMGITtssp75fPT39xlBbbPd2mnnomsz7+CLO5AD+nHTfodFqrTQtWlDFiwfd6+pYbdL2E3cLynR/W7iZmKorvO7hxh9Ka7xBpLSdWtIrl5a8Qyg1y0skncfTRR2/Q9b/uYJUPVfkvbqmVyNR3k6rkpQodKJ9XtUWtqhWquav84pWlrK+aEpTHH3UiS+cuwo062E6ISLqYUbO+x5JJL5E7MsMfL//DRvvq3n///fzn38/Q3phiyJv7YvmfV9lrHvQpqwZ/oK+9YnozxS1DaSlcQlvJKkJuDnYmQjLcxoDZ21HcNAzHTtNUtohEUQORwR41rStwM0kGfLAH5em+SQfVV+O2/n2dQAtzJj+NG4lzxdWX6QA/5eZ1xP4/pqMjRjQvSNmgEuoWNWl3ECfjYkR9WuJ12k87mirSWSoGzd2ZkrpxX+pWW+4CVm/1Ia7lYHSEGf7h/pieil52+HSn+3GMJMFwkOoh1eyx++6dlSlVyh/Qn13lkqHSU6p/q+BoFc+hMjv0RVOuMg/d8zi/uWBqjwcru69+md2m6KO126eb4jYbdQ+x8G4Uts6T1JbLVRf8BctSgQAZCkoKuHPa3/RLRImniRMnduPqXzxVvWiVT9nrr7/OE4/8h8bWJsJGLnmBAtJtBubqAuqrPiSQySU3P0Q4HCXZ5BMP1TN5m8nsvvvu+ktH+WaqlbYSAMpS2JtWwjU9WJNvUt3r2muv1St85Xu7pqkCD4rXLTfcSVtjC8UDcqisrOKggw7U6YNWrlzJqSdPpbmxGdMxOtOSpU385hEYXqhTSKp0PklVbawUvNyv4K5Sj63ji2q3ENjmJQYOq2LU2OH6S1E9k4qwVv57KiBORRArYfOd73yHv95wM0tmLcNumgB1k7Qrgmsvwtr2fXbZZUeUv6Fq06Y9wK03/03nwzUDJl5SFYBIYTqFxPxVmI39CC4/GKyUDtD7QlOZHPq/BDU7glu4zp88rOEv6oWUF27GMkFVmFU5RlXZ2GA4QH5uAaPHjuGYY4/Ui57uNuXfqHK8vv7ymzrafI07g/Kf1K3VZuTM4/Q26KZuatu1vmQOzcPfwQu6WCpNh3ITMV0dFxRsKad80XdYkf8e8apl5OREefGlF7v9mH+55kZefu1FDvvBDzn2Jz0joLv9UF9xgXUXuiry/je/+Q0zZqhKbZ2FB1xHVeUyMCyjs1yxcvZRW/uuhW9BSUmR/uwdddRRmzyoT81xlZP2mSefJZ6K6ecMt/TTn7d0sJ2MnSAnmsPjTz2uv8uUUOlKwNQZZ5zBR9M/ov/CnSivnfAlaulAB4sHvMawvYtY+OkyipeMo6BxII0D50NBknS0lQRtxN12CuL9GfbRgWuv0WAvZMl2z6M8oapmbk9FS2d2mf/lpr6baio/pL3/EtxQmpxAHsHmQqo+2pV4YS2xSBOea1DUMgDTDdCeV8PSEa9oq/HITw8ibXcQSuUTVHESX9k6Kwx+VWstWUhDxWyK6kdTM+YdnZ+8sKCQRHta+1bH0h3kpUswVdl3U1WnS+EHHIr653H2+VOZ9u8H2WbKZO0qoQSxSmnWG035L//+zD9h+hbnXDZVB9r1ZHNfGd+Tl+vytazdP+nysZv6QBG83SCutrDVdqkSj2u2aLpxua88VVlCD//hEbR3tBF1ivAxSdJEuKWcqtWTsRIFOt2Nah32KnKdKpLRFgIZle3AZMGEJzFCYHphzIxB1MynKbRMWywiRTaOm8EKGuSEcyiqzqWloYVEs0soGmLCtqP0VrCyYCrLh7JWq8jp9SPb1QtW/SgrkSqp29jYqC2lKv/hu2++R9pziATDlPQroqamFisTZZvtJ3PF1Rdz5JFHsbq2lqv/fLX+glFR2eoFpvyzdthhh7VM1H3Pv+ACpr8zHcM2dU5VSxWfd1WQhYvjq1/8t8rY20d1bRgMF79oNoH+i/CMpM63W5Cfz/ARI7j8ykt1yeDbbrtNi4LmhjbmfDgP45MDwQ+D3+mrlxl2P2ZJmpEjhnP7P2/Xv7vpppt48el3aWlbpbcAvZRLIF2Ba7dBW74Wun6gAwraIA5mNILRUUKqrQmntA4nA3mRatIrbezVW4G3rvXBxzdjUPkGbmkNhh9CGV3NgKc548DosVtxw81XfKGkcteAfPEo1f9fnPBLTN/E9MMEAkEyHUkykbj24Rv07g/JWcdSvTH32Jhz0kaMxZMfws9L6W1m9XzoZ4RAqghHWaRdBw8XpfFUtPaf/3LVxtzqC+eohVdFRUWXBFa3b7aBF1BCUS9kjzqaeCKuP6NK7Gpxa+hSKvrlbbQFiKczREsDdHxaSKi6kSC29o9VGUTMsAeq6EHQ4tcnn8THH3/Mz3/+c+22s6mb4v3oo4+yePFinZZQ/Xc8liQUDujPpao4V5U/kHHbjCa3JKq/P9QiXqW5Uj8qmGpNe/ap57nk0ksomzeJIQ3KXWn95rNw3HMM26eITDPUv+pRtfjLwaIpq52gG8ZQNb3/22rL36d24Gd4kTjVS3eidNmXBfWmZrc53S8RUlUyfSLxz3e1NtXzKTexeE6zXjiZrk04mf+Vt/bMDLGcBhZu/TSXX3mJzl2uLMDqM6U+S2r+qTR36zb1nrvvvvt07l9lLFF5zZ9+6AVKy4spLM9bm/1CGU3UO0Rlk1B5oJXBR81P1d59912tIVSmi/Wv311G7kt9JHj3FMHb3bHbLM9XglfliFWR3z3VlBV2TWSrKot5yimnYDTnMGLhngSSZTpQ6utWthv6DCpljRNI6K1q146RyFFCOYyZCOPaaeIVNdSXziFohnAcGyMYx7B9dt9jV4488kgtglUGBOWXZXpBXZDBDtkYjqGrBakXVEFJIUW5/XTmAzNZAAu2gXQewe98QNpegevFcZM+gRxLByfQOhTT8DDDaVwzzphJ1eTkhXSyeCWATzvtbLxmE6+hGj+Tq4We5yahboze0sILgv/5y6iTiQ+mizloJq7fgdE8QkdXkynFHfASVmUNnqcilH3siM09992tMz90dCTwUj62B37UwFVuFaqMrx0llYpjdVh4OWllM9PiKuN57LnbnhSV5usAKRXJrVxb1PaxcjtZvmg5JHIxoypwTmnGjH40JfC1vylQWV6pq0cZpkVGbfW5YK7cGlZXg6dcNdbxcw41QyqPzLBphCqVD1zn1LAwKC0r5/5p92zolPjC8crKe8ABB+q0SmZalUnOw420k8mkdEWovDnbMLChb1L/uEaGxrLPwDN1wQHPcqnNn0O8fC5ufrte5NkBW+8oTJiQfQJELTDVjo+aVwvmL+GBB+8jHksQCNq4TuduRigQwOwIYodM3KZqcFNQswfYTaRVSr6xL5NKl+JlguQXxvGiDXrhGvLyUbVXVNoqP5LSAYHRSJS8nHzGThyj57XKdNFdi5S61w1X3Erd6tVUDO7HL048/guL6TV9VGJh/YBN9bdTfn0qASPCx7NnYaWCFGaqcEjpz1KgwMAKQ0n/QrbdeWt23HFHfnn8Lwk5BeTXD2bAou2+FIQ5f9STTDysmo/fXEDR7LGY6Ry83BhWzCS3fQC2+7kLxPofrGSoRe+4RNUOk7QtkoASx59NeVCXZY5bLQRUCkm3mEA6QjAQJm42YwYgEskh4XRALECH3UBuNIcJEyfxxnuvkNdWRb+VE7WPcbKglQ6rjoJ0FeSmiBlNJEkTDBu4ZpJwNEQg12TIiMH6fdrjgvfFvvnes/b6eLMdf7HwdmNoXnjhBa648DoioRCDxlXpUp3rbtVv6KXVFvJdt0zDT/g6RYwqh5lXO5iiJb2zpdKV50v4bdRs+xrtM3bVQWGeXY81oJFgSQfpdBzPasUIgPfetlgDlpPMXYEfdrDawlCr/GVtAu27fvWtorWQPw9axur0Xjh5kFyn8lWoFfKaMQIZ7MI2/ZNJtUEwgWf62rLnK8HruThzh2FlqnQ1Nb9oAUa8XAe3qefMhBdiWUEcMw0ZR0V7aYuD6RTgtQQg3ARBFzsnh712350XXn6WcKCA9uZGzLiN3zEEP57Gr1hKuF+E4oICVq5cgdMaIDTvGDDa8Ad+hFOykKSbIKdlFFauy877TuDCS8/R1oGbb7yNx//zCEZHHuYn34dQB1Q9h18cx4rYPPX0E7pE6jnnnKNZqST7hx36Qzra4lghZcj2SDV6BN3+MH9b8Nfd6nMxqmfh9f8EDFWS1NS5fv9x161rLQldGeuvOkaJqgsuuED7fSqLhhLnmXRGW04LV01mwJLtNvbSXTpPuVCsiHxKdXyitlKqNE/KlJs220nntNOeuwrDsIhFavEq6iguLOGUqSdrF55N4T/fpU708EEqU8AxxxyjXVwCAeUWoyr7BbTPuPItN1Qp5QIfP2XpHQb14vZbinRqPzO/lcTKIvzKWayeNZyo3flSjA74mEjFIqqXbEthvSozbWK5YWKRVSwe85reHYqk1GcKQkYEvyRGjFZKhuSx7c6T9fMoX8h1m7Iwq+9I5RqkFseqgItauKosCKop96xLz7qGaG6UTDjGxZf9US8QlX/lh+/Nor0tQZp2XURCGQHUNVSfMwmXV154A8PyiOZFIZLUswAAIABJREFUGFA6mHmz5zPm/cOxVSWa/zYlQlcO/oBkThM5oTDJaDv9B5aTafFZ2biSMW8cju13BsCqlefq4TOIDVtC1aAqln62BN/2ycstpKOtXefNjrT2p+TNyTr7i7TsJbCyaBY1Y99g+Pt7UpAetbbcumentduPzmJhpbXFOhlpoal6Nn7/dloz9aTTDmPfP5ygpwJNvq515kdOhTpoqppDU8Vifnv+1G5lHvmqO7kv9JHg3VsEb1Z+Oh5++GEe+u1bRJv7sWTMq/i2Q35+Lv2qyjjuuOO+sCXfFQD77bM/XluIotRAIisrKGj4PJK/K+f3xjEpYqza9lXaPviK0pMqdZZyo8qbD60q558B9iKIdEDHOLQZs8dbqtPIGW7CGqcCwTysHENbZ3Nzysi4bSQSKa1pleBRLhnx5iRm0NT+rtoHtcHEKoFQTgGpTBulZUXahUL56qr23LMvMHHSeO6/79/aB1cJaztiYodtbCtKOp3C8HLIzB+MUf/5YsQb8ySBQhP3nb1J5cwkMGE2f/rTJVz0h8tJdcTx5ysXlKHgRHRxB2/rezHDcPElF+kAR2W1OnD/Q9huuylc+Mff85erb+Xxxx7T2/UZsx08X5cntu0wvH8IeOukcbOSUP0aMWspVr7yzVS+zp7e4nXiPtfeeLUWDhvTOvNuHtRZvMFxMS0TL+ZRsWgvylp6L0DHxaXBXkbdNs/gO16nhS3gaD88O8/GtIPk5UbYbY9dNL9Ro0Z1241jY/hsqnOUe8Epp5yqF3hqwZFMJQhYAV3UxPJU2j0To2UgVtTF9WMkZ+4K0UYC5StwjFqdzSK5chxWXgOp5cPB68z2oVpowKdU9WuluHYERar8dhd8sz0rSWvuampGvYetgiwDHnsetAu/+tWv1lpkVQXDU046nUAyl+L6YbQULiPQz+Oxpx/QW8Z/+tOftMBtqGmhbVWMuB/TQlu5YwetAK2BOnKMIgqWDSGUKsRTmVmcACEnDyNhUjPlDUI1FVQsm4jtfpPIgI5oA40DPyFVVE/p4gkUr14/H7PP3K0eJzIAAmaA6OvjKWgZgGs4zN52GmbIZsCHW5HbPhzLF9G7qeb9pr5PU9kC8DyKG7v+fZkJxPACSZ3xI5RcN/7i259+9ZAZ/OCq7bSrQ0829/meiyHakOeyvjtrQw7fpMeKhbcbuJXgffg371K+eGttIVC1zRuK5rFizFt4aYeK6ip22X0H7f+mLBQqmEj9+5sCxdT2twqGe/KB50nXW+TPHo3tqMCSMMF4IeYmti4k/XZqlOCd0bMO9d3Ark/17RjmmLexLQMvmML3U5DMx6Mdw8/gNlVh9VuBE0zqfLKmGSI4a1dQ5YVVRK/pQE4tpCHQP04mtBxXbdUnTUyjGMIZCNQBymLsEptlERiSJBC18Wfuipmo/pouKNcEE58mzImvkFcZpaW2CWbvipkpgnA9JAd3nmukMSe8RMXQXO594A79K1UVTlnKlC/zXy6+G7dmKKayWlcvYNyoUXobu6l9NW1LXPjsYC2Gv9SsRtycZWT6fYzvmoTLlE+mgWVaHHzIweyzzz5a4K9fqOPrxmTvvfbWLirKb1dncXI9PYft9jxGfNhFf+kNHPAMGRaMuxOjBIYMG6xdRFTVpZKSEp1NINsqpHUFz6svvsVb772qBeJbb76lFzQqOt1MFeOo7yCVt7mt4msu5WONf4DGz7bG9v47/9Y70spbTdHY6QxZuCOFtcNx7ASr+n9ESeMIcjq+eavew6EtbwUN/RdjD2jn3if+ocdILZL23Gk/ClcOITCqg3gmpgOF7vj3rZx90rmsWl5PJFlA8epRFK8eup67lo9jxnQaMNP/cgqsrjD7qmN8Uy1Y172eTyLUwMoxb5PIbeHiP/2RKy6+moq39vhvfITH8nFv0VS6GC/pUtY0nAHzd97Y28t5QuALBHpN8D7bR4J3XxG8WTnF11h4yxZP0ttr5jqFE1KBRj7Z5mEdBJKodYj2CxF0cnQVmoMO20/77KgtvvWbsqZdddVVevtYiV+v3aLda8ZzXcxkHgVtlZQtnUQkuWkCAD53adi0gnfSrpVUDs7VVX+euXPexs8fo5Xk+Ee19SnUUIW57JtzTn71jdRmegx/yiOd9dqnH4ppfnXww7rnZ9xGvP6vEnBLMf0qvPIP8HIT+PUWgbodsfrV4hUs46SpJ3PE0d//0q3/9vfbePeddxg8eBBnnnmmtprdcsstPHTnk9A+nMxclY1h3Uhl5RDcAdUv4WdyMOq2hnQEf+TzkN+urdtqOzicF9QRys8994wOZPqmpraQ991nX530XVkQA8kgjloMmD7FNRMon/d5YOHGDJJjpemw6rWvnLLgttg1pGinaeQrpAvSPPXUU1/aKu/KfVQO4SeeeELvsuy66+cuNWuq761JSfT000/r/Mnjx4/X7hoqpd/m2pTg15Z2NQddA7fDJFQQxV02mfSqr1uAremNj5P3Jl5hDekVX55r6qjKSe9T0lFC5dzOnY5ETgOfjX0UP6IKkECkvYSSljHktpRjZ8JYno3lfO7Xqj4l7Xm1rBj5GlMv+ZVetKmUecqX/4V/v0HJwok0DvlUF3/xkpC3aihVS5UP+FdH2/feOPgsnPI4TcFVWG6AaKKUeF4tOXl5VPerZuXcRga+v6f2ZV63KR9Pgwy+EdAV1aQJgZ4g0GuC95kvBtn1xLN25RrWfjO7clifHCMW3m5gnzZtGv/4652kvCQl9WMYNH8XnGAcO93pF9ZcOIeFo1+haMVIKhonEk6HaSpdSmP5XFIFTfz+4gu01VcFvt17772sWLpCW22Uv2Z+82ASeXWEwyFtXUs47dqvN8+rpOyTrclt3jRR050uDa/Q9sHu3SD1zadutVsluYVBfnjqOIZPKtH/XtNql3ZQMajTX/WZu+Zz+QmvbfhzqNy+A6aTiUWgqRspgyyVncAB/8ti1xj+Gn4ohefGMGsmgWNDrDPxu7HT/aj0CZ5v4TsOrpshEA5y5JE/4pe//OXXWvzXiDN1DSXQfvrjX1L7MbiLJ4DzRX9JfaOBr+CUrqAj0UokN6TLfNrhEH7ax6zdDi+5Em/IEgj4VFRWMG3av7vEUtW3V8nRlYXYzFiYdf3JaehPVevG+YgpYdRq1qN84lYPfIZUWYJQOgKORyboYIVstp68FZdecalOD7eh7bTTTmP6+9OxbJt0h0e0MMChhx7Ki8++SWuskXTcJRhVpmqDZHuKTLtNflVAl1N95JGHdKaRza2paHElxhUPI6OKPRfhuGniH+2A9W2ZMnI+0n7rTqQeN9pIesW2GMoXfH2haXiUT3mVoR/vTG7HGkuxx9xJjxHLXw1OgIGDKjFTIdpbYqSTKYLJAkJ2hLSTIB3pwM738B0LQ/kTtweJ2a0kQo2ULd2a6hXb6kWXG2zHTuV1yW2it8bh/9k7D/CqqqwNv6fcftM7CSVAQq9SLGBv2B0bY3cG/1HUsdexjjO2sYy9jd2xYEHEigpKGynSewIkgUB6uTe3n/I/+4QiPRVwJssH0WTvffZe59xzv732Wt8XcFVRkj8dMzGCExcRv45q2sksPASvP2tb3mZ7Xb9j3A4PbPVAuwHer1vxXdeK26OMWbRD7xlzlvL4Sx9QWVVH/965PHTnlaQm7/j9NfHrGTzw5Fs79BMns7MmPUdiwp6o6Zo/yQ7A23yfbeshIrwvPf4vcnpnUlngRw15wBXDbnOQsLA3Xl+OVYUv8uHWDPiChviNqLLDiiQNOKSvxQRQWlzOw488SCQkkjNN0jcNJHXtQEsKUlT9CooxWTctahURWbHruwE6rVjDvrruz5QGAXSvfeJQTr40j7VLaugxMJmZnxfz8TONRNaFi6tpqBOsCC21PXM3tnTErf2knEXgrUN2+5DihPxxCCmSjuQMEgn5UMI2SxnIdBmodsjOyUYoPu3Jbr75VpYtWY3XEU99qNxiYBA0vaLQ3lhylmAn3U3XKNH+H4EjbBUCCbW0V155BS1qoNfJ2FMbpXZtdhtTm8FLax1LH3ssRtjAVEwcISGqodFjxe+bzcNb7y2iPG4Zoc4lSIIgRDC8icXZTGvzJxhPRowY0WLqL7F5vOmmm60832CDECsxrMItxXRQtTqerOxUqouycKevQqsbgC7EQUgEtYrkAbOQbAavvv5ii/OdW/sc7dxfbHo++ugj/vnPfzZujJb2QA92xj2ogPASsQndW4TeRO0zAeJj6KaO2x1vKfkZZgytIo2Gdbue2iQf8hVZZb3oVCyivDueHizrN5FoSgV33HkHSUlJVmRcpC2IkweRK/7sYy+irs3EW5aNt7ZRSSvsrLICAJKkomyT3W1rL7XFeO33bmiL2XWM8d/hgTpXIdG4KOmVfbYpVm7uOYdzHxnV9jm8Xx0gwHvKdsDrbwhy8kW38fxDN1hg9/k3PqNow2aeeuDavd7Q/8xfzqv//oLXn7q9TW98B+BthTsFcfTLL7zKv954hblz5+L1ei2ePSGn+PITb+DGg7M+E1uVh5L8WSiKzaK8Sk1N3SF/ct26dZbgwQvPvoyzMoMkXzeCtmpU1U7Y7SNhQxfqe60kYNbRqeIQktfvv9ycMH7KRvxE/S/7J6VBRHsX/bQZ8beI7pYV+Vtxh9qxqyh+21NRnigwi68j6loHKUUccdxhzPmsErlkJMh+pIwSSCjHmWpw5DEjuP0vN+8Q5bVEQsrt2Gv7gukjnLWCmGZityloQQWlPBVn4LTdL06gYrmGSO9vCWsRHF6VuDgv0YgAOhrTpk3bZxrD7gYWFffjx49n5ZKV6LppbcYcUQ99F/+xyU6OShEKh71FUA/Rq0+eFTUW1paKgILW709/uoblSxdbEWlFthGpVghuOH2nvM2dp70Rd595uBJiPPnUk5Y61MFgggNbCCyIdTkMD+bCC3AcNpmAOHGJ7l0VTZPW4Bg5n2eeecoSwSkpKeH++++nsGA9eoOd4Kqdi2QMUoZOxuvLJH/VrqkdlanL2NBnJvHxiciKQnSdDckTJWz3kxbXCb9eQ6ChgSEzr0SSOo78D4bnp2MOB94D/sRNbM6fTVSJEJUaEPWOUsiGQ08gTvXQoNRx/5N3bGMvaasZa18OaauhmjWOeurCbe2//XEun3w5nVf+cYv1MwGAR5/9Z+Z++SJ2+870oY3dNF3n3HH38dg9V5HfvW1PsjsAb7Nu5Y6NRYRD/Ln00kt3GUUcQYoK5X+/+T5rCgsx9BhjTh5DTm62RVQtwPHO/KACVDz//PMWBZTgYhXguaKigmB9kCOPO5JPJkwkq/AwkksFI8L+sf2R0rB/VtK2V4k5V6AMWIjiS8ZscEJ1F4QCRCx/BrFaIc7RGXcnkyeeuo/xV99AbEkujqAgsjeIeZehdl+JEU1FdZcjeyScdg8fT/zAOrJ+6623eOP1NzBCMjhFgRjYbB7CYR/hcARTV6BMxtswGMKCDWNLAU7cWmgQICjOEsYwpC15x7LJ9df/2Sr8ao0JkvRbbroNUaAkmQrOoIOeSy9FbmLFelH2TPxdl1nAW9BVtSRdoSnzFzRwIv/9/668ikg0ghFVCFWkoZUPEZrSjUM41yI7gui2SpKzfaiyAS54/4N/W+ISB8oE+BdyoyJ3+o033kDQfQp9FalwIK4uYSSPD8MIEVx0NET2dNojxFh8GKmLceZt5rXXX+Xxxx9nxfJVSFVZ1KwdLqo+d1Qe3LJgQTOYNuh7+i4/D2fgVxSB1u9NNvT5gVpHJZ4kB5ocweVx4Z6VjzuaTF1KCVElSre1HQVdB+r56bjuwecBzRbGH78RW9iDZosiKTr1XddQ5lzPcccfbQmmCA7etubh1SYfIMB7+nbA+/I7k6mureeuP1+87cYcefafefuZu+jWeffv2c++mcnMuUt5/N6r2/xmdgDeVrh0b4B3d8NOnDiRR//6BM4EG+gmkiqRkZTFC/96bhctb3GM+dP308nISWfujHkYEQm77iWz4DDslfuP3Hx/pjS04lbs/64iwpv9HUZcHZoSQXUoCN2MpKQ0zjj7FEupRxRLXX7xlZSVloFNIrgkA2dOmIROcPbYMbz/zidE/ELMw0005uPdCW9aLB7XX3MzqwoKLFq1U8acxI03X7dtfeKIW6j7vPD8C4SDMZxladiqRaTOgPwviTqqUFCtoiCzuCeqTUbrvcxS3fph2g/WRqs1NmPGTO75y92WGIGtqAc9S45r0nBlzgKqhn5vKaP1HzCQl15+oUn9WtpIAMcnn3zSAr6C2aKwcC1aVOiPJCNpdkznZhKSEunaLQchOyu+dA6kCb+IjY74I+6VoRnIguBaMDEEVRRyMPypRCs6I9nCmA27KVqVy6HndHQlhCfRhdNro6EhQDAYQAp5CBUNQY7ti2rJIPvQqSTUZ5G29BDs7J7qS6QqBDw16LYo6WUHRtHpQN6vjmt3eKClHhA1DJJksGjgO+hxEc4fe67FPNPmgPdzwR61/009Y8G2i/7z1Y+tNLqbrzp/289OHHsLz/ztz/TuuftC2zMuu4tH7/4TffK6tvnkOwBvK1zaXMArLiUEBUTO24cffsjagnUcd8Kx3H77jnkqQjbz32/9m6SKfkgunfjSrngE3ZAmo2yRtG3FtJvVVaQ0COGJ9ixaa9aEtjQWxW0N9dFdUh625gGLQrfCJTVW/m+7pUW4qohlfIucoqHa7aSlpvDBx+/vtghNqJbddddd/P73v+fLz6cw+8elaOEG1CSVl1560qIJE1G4G264gTVr1nDddddZRPtCx13w5wo6LgHgxFH7NddcY9GX3Xj9bVRWb8IQqnGyQWBBLu4UH3rGJiRRNymBFjItrXhxCiGKudrCRF7wq6/+CxU7eYsvsOSFhXTnnmxVv/cJuCtQVYXExCS++GLyAROFEOkBIgKcnJzcKmqzRYsWWakYQ4a0LooiUhWuuupqVi1fjWpTiMaiOOx2zFUDIJgFIu9VT0QZ8i2RtX3A11gIuaOZkLACe68lGLLOo489arFTiAjxa8++hX9DX8z6nRk99v4kOLpOI8cVR/dlO7Ka9Dw6ncIfBV1fh3V44L/fA4JqtLTLQtSUgKXipwdsdF3dsgJuQ9ao82ygpPcsnDEnqeV9LSaUUOdN/PXxe1v9Ltn5bmiTDhDgPXM74H3l3clUVNVx9w2XbJveqDOv470X7qZL9nYe8K2/XLZ6PXf+/RUmv/1wuzxcHYC3FW5tCeDd2+XEF6hQayv4oYKoZtBz5Zh2ITg3ZSGR2zTi9L0KT7TCd63tKoDtHa8dabE6zJxURFlRQ2Peb0kD37xVYBW4tasJ0Y3hHxIxIuTn9ebW226iT58++yy2EgDn4vPHUVsbokd+Ng89eq8Fvm669g7mfb6MrKFJDBremy9fn4a97lAkTz1K9jr0qAtJ9sGmfLTOK1FcBg8//LCl7Cc2UYKbddGclZSVlxPxG5jRKDFniBGHD7UU3ATYPv7449vMJYI275yzzrE4jl3l6eQX7zldojhjDg09F3LTLTchclJ/6yZSO8aPvxa322mlZrSUE1j48IwzzsI0dRRBdWXImOv6ItV1A2PHdAItZ3ZjtH79iN24T0fuO4FDTzjE2jRtte+++457bnyA4BrBldxU6i+D7EPmER9MIGfpETtcq/9ZOfQ/Q6gnwgd/mPtbv40d8/8f94DQbaxPLsEQwvB2P5HEIO5oPLbKBOL8na06hc3piyjvNR+XkYC7NIdIcjX5v5zVZM/VezZSn1KKnlpJzBVAcil06p5ipSuKd3VlSTXDRw+13s1tHuH97MDUIahn/bL9HTR9Pu98PMVKYRBWXlnLKRffzpyvXkRVdhWmeu71iYSjUW656oIm+7g5DTsAb3O8tVPbtga8lZWVnH/+WEL1YWwRJ31KTsMeSUbRWke6bioRarPWUZu9kpg9QGJJb9SQi3p3CfHlXYlmVZC9m4ptsdyDJaVBAFyLvizBbv05+bI8C+xuNcHm8OZfF7Y/0LUuaCIN/BgpIcpzzz1nRWGbYyI/U9ivOXBFQdGfx9/Mi68+Q3FxMbfdfDvS3HOQdjhSjghNLHDXEcn6Eme6ycAhAy0arWHDhnH66adb44rxRXGaiBQXry/hl4W/MHny522uQibyy8855xwrTYFa8K4/Aj2umljmOpR1WfQMnkzEXcuGYZOsLxXBqet2b5VybY7HDq62YmP65+tuoK6+xsq33ZOE8b6K8QQH8GOPPYYuaON0iWhIqADmolaM3nXB3nLU3rMJLT4GKbYjLZ5h+HCO/gIhTS4KYreaiGSffPIYqmefiMS+2F0MnF3mIIIuV5x5FYec2I+1P1Yw45k11BQFto150n39OPKGXrx/xVyWfbbx4LoxHbPp8EATPaApQYoGfkckzk9cmtM6eaouq6Gsupy8VccSs4eo6lxAYicHuqYRqdbpNXdsk0Y3pRjFvafTkFBKgjeBjJ5pdO6WbclvZ2c3spf82kTxrigqbXPAO1FwXO9/U8+ev+2igWCYE39/C0/cN55hg3rx0DP/tpRQH77rStaVbKZ0cyWjR24vwr/mrn9y/OhDOHvMbt6BbbCUDsDbCic2FfAKIPvEP57g3PPPtYDJ7kwQ5Qvp0LKyMiZO/AwzaqDYBSl6Ou6VnfF1X03+kvMt8v+mWtBZTSylmtJu/wFDxhPOAkcI/DY2OpYRiUSw2dx4PHbMkEl8KAd3UTeyQ9vpTEJSDaXDpxNY3ReSy6GiB4T39eXZ1Bk2v11mtzgL+GZ29VC4uMaiKWs9XVlz5mFgdJuOPaeOb76b2CLGg71dTYAkASJrq+swZgvAuzv6sS0juFYRtddixK/Bli7xxruvMeXraZw45hh69uxpNRLjCanXiy++eAcBhuaseG9t165dy7hx4yz1NVM3iRkxK8rtq/GTrKVjS4OYLWaxkoiI43+TiWi9UFDc2YTPL7nkEoqKivn0009IT0/f7bIfe/gpJk6aYPHWqiEZ06OgrD62MZVhZ/NswJa3hNCik3eJ1ppEsB32KWkpnfjT1ZcxevRoZs6caeUCP3DvX2molpDDeZiVW6PDYXCtB1cNtoQKq54gPlNHCcTRe9XpdO/TlfHTjmmsNQDe+N2sbeDWlWgne3AipYvqCLWKIvC/6UnoWMtvxwM6ZRlLqcxZzv1P38Hhhx++beri83zSSSeBXyZvSB7pSeksmr3MUgZMXzqcBF+OlR5Wmjuf1NJ+NCSWIqVHEBLo0UCMrHVDKe++hIbkYsJqmPMvPsuiHt2XtRvg/eQAAd5ztgNesfbZ85fxyLPvUVVTz+D+PXnojistbt0PJ01lyk/zee3J27a56Jxx93LDlecxemTLON735esOwLsvD+3l900FvGKIl55/GafNyeX/d9luRzzn9LHUlfmIaSHisz24tUSim224g2lsSp9PtEpieMGVTZ6tz7mRdT1+QI8PY1dUkjZ3J2ljbzb0mEHY5kd3hyzA2yk9B82MkpKWYrFDmDok652JmRHsqp1ArAEtION2qTSo1aCoGCuHQV1u41ySVyKnV2GsHrGdLaDJs/wtNowhD/+El958vk25WkVEdsG85dxw89UEg0FLKEHcf6Vg78wK6uCp6GYVpifK2++8xZOPvswtd15tFb8Ju/POO5n6w4/YbXY+/nSCxZfaHlZVVWVFmsvLy/nrX/9qpVEEfREcHpuVu9tSOrT2mGt7j7l+/Xouv/xyysoqWLly+R6FRYSqouA3FgBZ0R2oJaOQ6nrsMD2l8zT0TX2w9V6AjJfA8j0wICjVGHErofsavHFxVFc33g+xQW4I+K2/JSEIYbgxzCiKWxA7a8TFxVlRJ1HYV7GpEofNTfymrhybfR79zsxm+aTSjpzd9n5gOsZvhgcEX7L4szXwI07Ltqfn1SSvBIeEWh8Hukqc4ELfks4TlOpYdfgHDBt6KA8+eh9O567BBMGsJIJPrz37NvG1OaStGUBdl1WUpq4hoSEVn7cK2W7iNhOEHiQDBvdl6JAhfPXZV1SsayCjVyL33HeXxSneVGs3wPtxo2Li/jb13Hn7+5JNvl4H4G2yq3Zt2BzAu6/LbK2+Fx82sSsUOT4vv/yyVWAjjjr+9sBjZM06FJfXiRSw44ilsr7LT2RXDME0DEybjivQCGaqbcWUDP8GxYZV6HTzDbdhxDSRqURySgrHHH+0VTiXlZXFmDFjLAq0rUctP//8s/Ul2KlTJwS12pQpU6zfr19fRHFxEbaIF5tsxwynE5HWoTg9aBEfpuJEXjkCwvuSON2XJ9ru90LAYtQZXa1I8KLpm7dFg1t3hSDSoEnc9/jdVgGZ8FVrTdzj88+9iNvuuJFRo0ZZLAwvPvki5sbeKFUj9z68FMH0rCXaew65uV2sKn8RTRX27bff8vcHH0KqSIRkH7ILXnjhBSvXuL1NKMN98cUX1omFWNPOFHztff0DMb4oTDz66GPIycnm3nvvtTYdothwTybu+8iRI62IuF1yYV9yxbamhlJGwLkKOq/G5neRkJxKYOmJZHVrPF3ZvBM/tSGvJ9xjKqpbt0QqxBeuGF9El0WB3SeffMLcOXPRgyay5CQWjmLqXpxuDxGzHNWU6b7hcOz+ZAzFaCyS7bAODxwkHqjsttRKvTNlk4itHimmoIl/giYOyYWqSuiqRqW2kUNGDmXl0pVIQu1Slkle3wfDFqHOVUY4roIevbrzt78/aH3H7WxXXX4dVUtCpKwaiDecwdr4Xyjv/TMDBvbGJjn445+usDb1grpw54LVX375pUX83e0GeD86QID3vA7Ae5B8bNp2Gm0JePc1s6OOOIpoWLMkadFMvEYi9UolLikZXQ7SZf7xJMYao641aQspzV1BQpqNqB5lyNDBFguAYAjY3a52X9fe+nsRkXr00ceYM2M+4VCQaCyC7JAgpKBFDFzeOJRoOvryI5s6ZLu0G3VmV7yJDkvAos0ZGuQIZt6nSPESWsw7s/XjAAAgAElEQVTJ48/+hUMPFfy6rTMBTsS9+emnn7jj1rtRNnZDrWxaNXA4+wuk9ArUoBMSNY497miEKEplRRVKMAFP0RmQuI5Y54XYvKqVzxsfv6s8cutW8L/Vu6CggB9++MFKXTjttNMsJbxoRCemhbnwwt9bVGdNMcF48fZr76DGHBjLTwEjDlPdgDR4Bna3whGjjuDHydOhLo0B3S/llEvz+fCZpRRsKco049cg95hHOBhBV8KcdPJJFouHoMUTJmjZ/nTlVfh8PovQPbgxA7N6JOhb6OnsNeQOWEXuLyegaM2XcW7KGjvadHigpR6oS1lHTc8VDDyxuwVQxQZSgM2t7y9RrCs214K1RtQu9O7dm/79+zPhg0/4bsr3rC9ah0eJw5vkJjkjwdoAis33GWecsS0dTaT+iPqCfzz8FF02jiRjY2NKn+YIsvKQT+g9tDvFBRs5dcwpjLv2D3s8sWnpGtsN8E7YXYFrS2fZ9H7q+QdvQWtHhLfp93GXlvsT8IoojShy2hqdE9XhAsQ+9NBDbFjgp/eSM6lLWoevZyF1SomVS2lzqNbLQBybPvjgg21GBSWA77PPPmtFEOtq66yIoqE1HjWJf6cbwwmtODD5Qy29nQIki0hwUwByTNmI3aMRq/XgPe4Xvvr2wzZ5CW4FvUKp75GHn4SGbKLzm/LSMsDeAH2+IhoOYne6MNcdgqnbIJSGbHpBsEr0mkTAVoPL6+DCsZdx1fimq6S11K+/tX57KzQTpzBrCzaQ2SmZI0cfBZKJU/hac9BQJxOfYJDXtzu9evewgLA4pWmKNRav/YNoQxSnM4H4BC/PvPi4pbA2ffp0JnwwgQafhnOlELjZMYffMOqQh3/O408+ZkWXLrzgcjp1TuWZZ56xPu8iL3HMmFNQZA9DD+nDj9/9jFNEvkSUV3MSKE0huddG+s09A7uQWO6wDg8cBB4wpSjF3ebgGRHggYfutSgaW2J7+zyL79BXn3sLf0UATzSFjNUDcGw5JTVlnbUjJuPtbOeEE4/l0isuaZN3/O7W0G6A94OmfHe0xKt776OO7QC8be/Vg2DElgJeAUJff/11K8+vpZRGYmf72ANPMuPH+XgaUoh5fRieMAMP6c3Cn5cgu0xikRg22cakryaRkND2hWZiHVdc/Ec2lBVbu2vTMLGpNvB7cTgTiFpyxE0vsjtQt1SwPTz9wylc0PNDK+2hOWb2/JK4HlFUU+RLSvTsm8nQoUOtHNzmKIkJXwrGh6uvvpp33nyfSy7/vVVoVjQ7hLdyZwnY3czQVW/JFhMQR9F7oJyTg+CuIpr/A7IKM2bOaLNNUHN8djC3FXntohBtT8wL4nMn2BAEV7ZhSFa76lVJeDKDKDoY0XyisToGjfbw/oTXm7xUAaa3FsEJarGp380gEgkjiHv6DxnEokXz8U8fiEPdSeRBrsMx7GtOOf0sioqKWL5iEf985ikGDx5s5QZfePo46ooUNKWB4WN68p85M1HnjsAeyUbPKSZsr4TkUvrNPx/nVhW6Js+6o2GHB9rWAyYGVT0WU5NRyAV/OtPaOLaHiTqJiy68BNuqTDKLhqDEnMjmjlK3UYePDfmzSB3i5JXXX/jtAd7395EO1x6OFd8+v5/TTiO3ftiOCG8rfNhSwCsuuWzZMubOncsf/vCHZs1AAKMbx9/KmpVrLCGKmJCPNUx69evL0y88aY114gknokU0evXrzUsvvdhiUN2UiYk830svvoyayjp8oVpU1YbL6bIEMmzEY9ZmQfEgMFpHrdaUubS0jWB9aBnTg4GSPxOtIRGpIQNiCraUSsw4P5q6mWGjB/DIEw80icnB7/dbx2yapnPzzTdZ0cFVq1bxwiPvY1t1dkuXtks/NaMCPW+KVaQkCtp+97smgOk2u/p/x0ALFy60hGNmzZplgUpDs1G1UHBz6qT2moo7NcLESZ+2KL/7tttus9JaJGxEguCNt/HHKy+zUhO+/24qkXknIcWSQAqLQ1f89l9Q81YwefJkpnzzPd26d7FOdISJ1IblkzbhIR90mbB3M1LEBVEPDl8O7khjfvHmXhNIi2bTbd2RyBbE7rAOD+x/D4hN2eoBkxl+6gDuu+++Jr03WzrLU449i7R1A0gt2bNKoODhXTTkXVKzE/ho0gctvdQ++7VbhPe9AwR4L+wAvPu86b/FBq0BvGK9ghVhX8eeIvIj+E7vv/NvrF67wipQI2BDj2pEPWEGDOxn0UKJHKaQL8rQkYOsIjORD9rWvH57ukfiS/+Rvz7GlB+/sY5hnQ63leYgSxLxvkzCniiR+cOQzfZhCDg4nx0TKX0RSq8SkrzxDB7Zx8rr3BMPraCuE1FhkU924dhLGTy0Pw/c/1fM9YMwNjaP53ef/ug7ET2unkg0yrHHHsMjjzyyzy4dDXb0gCguvWb8NVTX1KLFoiihbLwpCaDWWKwojz31oFWQ1lwTefarl1bRsOZY4npNwREXxWZzIJkGWkAhumoQKvG4h88kqhs4bA7uf/BuS5p0Zxs/fjyrfi7GE+xCxIwR0/zYvTakiBctsQp7MBU5mEzEtRHNU4s7FocrEi8yNUhd0w+3vns6teau6WBsb8gxJFNBMsUJlEjEaqowx8G4mt/2nHQ5SkX2UgJdS7n2nss54YQT2nVBr732Gt+8MI8uC8UJ5O5NJOdtPPQ7KqRiRh02ivsfubvdAHi7Ad5/t762pCU3Qr3o55Z02y99OiK8rXBzawHv3i4tAKzIkxV5RoLj1AgaSE4JTdeIaTELOD311FPbqkIF6BTAuL1op5riph9//NGKGoqqc8HJGtWieJwepIYEqjfXkVwtchD/l8wEJQhOH7aEaozOS5GJIxLxYY93WdHBN958cVuB0UcffWRV1If8MZYsWohZ1g19vQBN7fBlLIVp6PY2MZeG02EjMSGZU047ieuvv/5/6QY1e61/ufNevv/+WxSbgsPutjYoIvWgfkM2aqQnqtdHsKIzjpzv+OKHNywlvOaYSGuZ8M7HlCyzk9nXjwi4ClaUcFC28saViB27PZmeA7I45uijOX/s2VZahXhuxOdfAF/BwPL555/z+GOPI4UVHOEcXFXZJFXuyG1ZnP8eeIIohcNJ8/cnIvsJZa8hHASzUyFDFo9FlnblGW7Oeg6WtkJVS1cDRDxBKjIX44urwqskoPo92LU4stb8tmoOmuNXIQc9+vp83jh7ZnO67Ze2VT0WUZNcSGa/RFKT0+neoztXXt2+tQW33norle+5Sdm850BCdfJa7CeW8cp7z1jv6a0pTqJ+ZdzlV/L08/+0Tsm6d+/eaj+1G+B997BWz60lA6gX/6cl3fZLnw7A2wo3tzXgFV+egsNTUIO9++IHGJJBVA5ZxTGDBwzmpttusqLCc2bNpbK6ir/+7f5tFFStWEabdRUvBpHb+Nq/XrPIuvvl90dUs4svG3nZoRDKbx/w1mYraL+BTNMAxY8k0sSiKqgBjMxFjLv/VCuVQVQdH3PMMRghGaXkUKjtBEZ7qpIZFnODEb8SMxaERB0z3kBVTQssdbA4bH8WxHP9/PPPW+B2wocfIQUkanwqetVAkvMX4U22E/RpiKgh/iSqC05AMyrofNgcxow5iTvuvKXJD5ZIk7j5xruQDUmohmD3CDYQCd2MYpialUcoClfFka+oLF+8ZAklqzbh1r34fWGiiTUkxqcQrIiiR2W8kTRUycTnKUdf1p/O4f5ElQY2Z35HoL6eNO1EEoQgza8sagaoGT6J/MUn4Yn+dujJTDSQZGK2BiJePzHVT9jmoz6zBNmmIJsqMUMiXKcire+HbMShJ66BLsvIXDMSl00lPtANWbNtE/iJemqpTl+HGnSRVt7GJy1Nfipa3lAIhVw99RhLMW/em+tbPlA79IyqDRQM/xwtpiN7DGKEGH34UcQleqz6ByGYs5ViUcioHzv6REaOar1c7tNPP82cf60ja/l20Ymty9NsISr7LiBg+kjo4uCxVx6wWCF+bR+8+zGFa9dYqYKiAPjaa69tlXfaDfC+fYAA76UdgLdVD8TB2rmtAK/g71u3bh3PPvOsFcyLc8YzfMQwzvv9eXTr1o3Zs2e3+zFPW/n49ttv57vJ03C57Rx74vFMm/494VAYqdSLLcPEtuYUJG27/GlbXbctxzn3z/35+JllnHxZPude15dxwz5ry+G3jWVmzeOSe4dty+N+/V/v8PZbryHP/T3QzpE1KYZt0BzMSDVBb7UlDiFJNvSYYPdQrJMDUTzVYTBp0iQe/vsjeEpzMew1KFIisXAILdOHPcHDI4/cw2uvvs3JpxzHo397nOqlRyPLmSDXkz5wGnfcc5NFXbY7E1EiwcqxevVqlixZYnF8CulNAqBu6Ifk1gjFL8dmulECqWjOjQScARLiEsmKdSca0MgtGkTClvQDn2sTte5qYu6QxadryJrFnWIPqmyIKwHZhqTqhEP12FeNJsMQm9BdLeQpw99rBvH1GXQuOAJV2ovi30HwkKztNpVaEZWzudE1GzYcRPwqUsyBUp6LFBbpVLsvoNX6fwlKlKitGoecAFHoVnIoNTnrCTsCxNR6Eit70bXgsC0pEAfBgpswha1gVyjj3Z08sU2U8cKuWkxFIypHcYfisO0kc92Eae3QxJB1GszNFB76A5ISxuZyoAQcJNZ1ozZxLTfccy3HH388xxx1LBgmU6dPbXVqgZBxv2Hs3eT+fMoOAZiYGmTzET+Rf3g2559/vsVl/Wv5919PXKQais2n+N5ubZS33QDvW7sC+uben5a0Vy+b3ZJu+6VPR4S3FW5uKeAVHxbBkyp2r2++/C5FG9dbUdxQJGDleYqI32/VRAT6ggvG0lDXQL8BAzjqyKMtBTDNiBCNRPFKacgrT26kyjL3wCZwgBd/+b1DmDmphH/NF4VI8Mi4GXzz1po2n5WRuhBHv9X07jmAux+4nSeeeII5c+bQMKMvccp+OGJNXoKRtxi5ugesFdErJ3reZMz6eOhSxvU3Xsd55+1d6a3NnXIQDigKxsae/3vMiEnXBZfilhs5bFcnTqb377xccMEFVr61bDjQNahYegQYyUhyFEfmYtJ7lDFmzMlcdNFFO0SL5s2bx6233o6ky0TCdjBjqFVg89iQioYjJfmJ2zwYAw2F7RXkJd63SMxyMWrDuSh7YuTYjR+LvMtZY19AzqaL9+nlgOnHN/xLTDNCl80jSCvdrne/z877uYEA9Bu6zaYqeymKvxMsG7V3Se49zM+UQ2idl2K61yMrLsxNedhqhEiLgdLnF1wJfnL/c8pvAvSKNIYLXh+BJMHfcr9o1R0xJZ3ybgsJppdjSKa1iTJiDlRMpJCMXXeTVNITb2BXIYemXlhssOoHryHgD9F96QmWjyOOGpb2m4DN68AR9BKK6Nz5+Pg2Cf5ccOolJM88FLc/1To5Keu8Aj29gmpvEf/+4J1dorpNXcfWdoJiUpwKiXzkvn377hWktxvgffMAAd7LOwBvc5+X30T73QFecfwpqItEHp2I2rzz5nucN/Z3eL1eCleuJyc3ixkzZrBqxSqOOuYoi0pIKKuJnNytxze/icXvZZLWsezNNxONxnjnnbctRbezzz6byopKbKodlxyHGk5CXXfmQb1UEeG941+jKStuYNywic2mLNvX4gx8yMO+JLNTF84+5xQ6dc6w1PUKFpbgWiPyndshd3eXSRm7RL7klFKiPadYRVcChP+vmyhQu/LK/8P0Q07hmXgj6dQ711KTsphbX/qTJQX99D+fo6owCb3uCDC3R+dNomT3Wkh9vZPUvCo+/uRtiyJQbHqPGX0C1aWZhDYPx5a4kOScTWQsuhh5H1R+tVnTsSfXctja05sFeGf3mogRSCS5cN+CJj5bEcGBs4mv7EKD6UdyROhTcCo22jPNpmVPminFWDr8Q2IVDiSjE+rGIS0bqAm9vIf+QO7sMUjN2Gg0Ydh9NtHUMIpm35ZqsacOyd08DLssl6NuyLckoT+4Ym6rI7sbus+hUkj2LjgcBztyS0cT1kJcPWZOAT2WjSLB13Ofa2lOg+WDJlAfqyB/+ZlUdl5Oz7PiLI7p1tpV48ZTPUOnS8GxhKll2fAP+eM1VzBs2DALoLbWRBT59lvutNRN/3z19RxxzGFUV1dbn/vU1FRELrAoLBcR5LffftsqMG/rIvPYG7sWsrZ2XU3pb7tiVlOaHZA2HRHeVrh9K+AV6i4TP5nEosULCYdDFtA78aQT+GXOIvyhOjIzMjnyqCOtHE1RxCIe8v8WcLsn9wkQcPJJY+jarQtiByt4es855xyK1hVZ1GVeOR5pyQV75oxtxX1py66CsuzO145kxufFPHdTG1efShpS5gKktApGHNuPnK6ZFt2VWpaOWXQSVsXSfjNRqR4DRyVKgg+t0zy69O7Cm2++aRUh/i/bscccRzQcRVmSgZxXb0VciTMZ1Hc442/8I3+84korX7Zq1SBkxY3qqUGrEV+ajUfosnMDab3nk993EK+98U/ry+7UU08lVOWlqvBQ3BmFOBM34KzOJH3zyft0tZBUbej/HiNXn4tb2aKYto9eUSPCjC7vIKOSmp6KLClE9RiGDvWVKvi8yLITqT6RoLoWd34lOUon9KhJViCLYDjAisyVDPzlcmSpfU5mNnVfAGEVyRbBXZ9gcaN6A3uXKhf3Ytng94hIGsqqUaiRnH36rzUNDHsdSQOW0XXeiZiSsV+ivf70jZR3X4hiqLhCyai1Xly1abiDyUimigC5nQYl0uOodLKHJDLlgeUW2G0rCznqKOk9ldpF/YhTdn8/wulL8KRvptfS0y32i7ayTV3mUtZpAX1+vph1fadx4h+GctNNN7V6eJH//tbDH9Fp1gkU5P7AkLHZPPj3v7Z63J0HECe5hx3WmEsrKEVF5FekQbzx+ht07dbVoi4UFKWXXXbZLlLFrZ1M7PVRrR2iRf1tfzj4iiO3LqQD8LboljZ2EoBX5N8KonoRDRORTSF9KECtkC/cE3l9Ky75m+sqCn22AiaRn3j66adjahJuIx6tLA67kYfZkAqx5IN2bd5EOx8WXsAfh33WJCW25i5Es69GHbAQSdYxohBbMRB7bMeK+uaO2Zz2uu5HGvwphmK3chkVUyIYjqErMX75Ze7//HNcWFjIlVdeSXJ8Gl175HDXXXdZUZqtdu+99zLth+nEQjquBJXSOYdjczVgimffGY+aNI+4pCg9enWnstSHz1ePocSIxUDSJEIxE1edSvamy5t022odq4llzMQZy2Jk3dE4RXpQE2xq2pt4HR5OqD/eSpGIyVH8dj9rHWuJRaJEPVFQZGpjVfSq6s1geei2UQ3T4JPcj1BlF50WHEN8rG0oBg1Jp6LrcnwpRfhj1aCoEHQiuUCyxUgIJuIIptGpaDC+hI1UZxXiDiVSaysnzZ9LSlkfalPW0RBXaYkVSAuPR9LaXmRnB/dmrCIpo45QLICEQtb6wdY7ri6hnMS6LFwNaU24G41NokIwJgZ2TUh973qiU2cvZX3/adiWnmTtn4zsAmRvA7IzjCfipuvi46x+2YOTcCXa2hToivnpxCg45DOC84/AoSTtcV2GHCXY533ylh5LsuB9bgOrkzZQeczPHHHCCBZ8sh7WemgYUMiXP7aupkKcwIo0pduvvIeoZnDZ9edZIj/7ywTwFQEvEfG99657SUhI5IKLzm/zCG/0tQMDeO1/7AC8++tZ2q/XaWkO736d5EF0MUEHM+PHmZimhMBWIv2jtrYOl+wloeRkiHQ7iGa741REesOinza3C+DFXg7RNDRpI8Q1oPpaf6RmSiFIXI9sb+QY1Y0IRkQGexQ5akcW/tfjQKkilLaSvP5defSxh7nwvEuJrPDiGujn+JOO4+677z5o78nBMLH33nuPl555FV8AolU6Gb3tKIabQKAO2QHx7k7Whjgzx8XqnzfApj6YaSsw1Shlq/shJO+c3eejlNvpXnvZHpfks60nllOM4qkjJphbQmErIivbYyhVcSSoKWTW5ZAZ2/OR8qJO06hPKOH8DWMtVcDmmo7OGnk1i7MXYfN1AleYJF8nPKVdidd2ZHrY19i+1GIi9jCB9BIiNp1IYTeo3zV6GI7/GfJXk0Q2UTQiGzuBvR6zOhFXnzKQo0iaHdVuYgQTiSzZP3KqRs/5GIEwuEOoiTFk04FWl4AZv4HM4kFkVPfZo4hHzObHn1ZCXfomgo56JMHGoapWtDhzyXA8wUwEgFR0O4YUo3DEFwQXHIpLbxQKsYCoFEE55EfiqnOI86VZ7cIZlUSkELbKRLyBNDwNqcjG3osNA64KwsnVxNVkYw/FgSzkArdG8HWW9f+M8LpcXGGRy7x302U/9sGz6T3/9DY5nSrOncbw/8u1isLev/1HcouOpGjUF7zw0eOtot989cXXmTDhQ/Ly8nni6ceapYi5Lx+05PftlcMb/dfolkyn1X3s42a0eoz2GqAjwtsKz3YA3uY5T+QvjTn5DBqq6hHHso5APEF7A5JDwyn4PisSUTYfB2Zc8wben61lIT2stTNlWGsWZGBSgTxkGl36ZFssHyKiMHvWbKSojN3rwu5UCIejyLJpnUYImh6RT3byCWcTXtQduizCUHVsXoX09HT0iMT7H73T6uro1qzqYOwr8u/vuuseNm8u46STjrNSFR544AFeeeUVJn70Feed/ztiRohPJ3yJGbVBUf9GxgAgZFtFqPvPGKJgTTGxxSBj7YW495AjW8lCtF4LySg4D6chooGNFpVrqenxJQGfhivFwGa4yKrrQdeGvvipIaL4SY/0pLjXAtymSb/yATj11jEuVNuqqDZrUBWVioQqqp2VmDYJfHFkFYzEHUvc6+0KxJexfsA0ojVuXPERgssHYAvuma/YFKDWEOkhu6ZSGGotsrbnyOP+f24MtD7f4pBUsjcOpCJnBfnLTsSQDfzeKnxpxfhSNhCp9iJV5uFuaAT5QlI3QBmOIQtw2oXQiIpqGOgxhZhIIVm0a7TOwCDSdT6OFD9SxEG4Ph41ZrdEZWSXD8keIHXFABK0bFxRD5g2BPlX2FtLxFNHQ8omQl4foXov3hSh3Kdb/OlxVTm4a+Oo7L6WsBEl9MthOJuYOhMa+CnJhb1I8sbhqk7FGdsO0pt7L9b3nsZpt4yw3mEv3vQROUtHUdVtKfYja3ntjZebO5wl3f3tt98ya/p/OOHk4yxFwoPhFLbdAO+rRzbbR23RwX7l9LYYpl3G6AC8rXBrB+BtmfN8Pp+Vz1tTUY+52YUzCySnQcyM4DEySLBniPpfi7lCFPCISLD4I0tbaIVEpbCotRKxS4EeJFFHbaKItuIfo7FtY2xT/ET6FXm4aVUay6KTKX5ubGkrWm3pbxpI4lrWuAbyVjUmCYKGKDyIoq0+HCLxoAnJ5N3THbXMOy3vpccVoPSch+JyEB8XT9AvqqkF+YJOTnYylWV+gv4IhhFk3DV/4OLLBP1ZY27ZHy/7P9YXr8NYcBg2Iwl/2hdoCSEMTcPtjqNbXg4fTni/5ZP7L+4pnk3xLhD82aJYRXBPr11WQpIjF7vHQbg6gqPwxF0ifuLJDBolhDovwHQ04HbJFjWcq+Bo3OFd+W9rukyF+M0oqw7FpscRy1iLO5SBFEggkFZILGU9ZrXHOmYnvgqbPQVTcxCjFLtN4pzS87BZRNBtZ+LzIaLF1XIVP6R9h1yVQ/+yvechV2WsYkNGAcqy48BdDcGWg6K2W0nbjqRnLsRMKSVm1OBV0kDR0AyhkGnDvvoobHuhHRTg1xR0cgaEPZV4AtktmpxuC0D/Wag2yUpTUk07uhwjKvKdY3GENqXgKOu1ZWyDaNIG5Lw1xKrdmGotSsFxKPuIEO88MVPWiXabiuTSMRUfSf4e5JQOwhZubhDD5Jd+r/Lm5Nf49NNPWfBaKVG3nxpvkcVP/8ILzyFqZ5pq4jMq6P/efecD7r3vLnJzc5vatd3btRfgjbx8YACv408dgLfdH5oDcYEOwNs6rwt1qFtv/gsxX5BISFCP1hGf4KFL4WE4zFQkqRGsCqlTY4v6p/jvRnxp/UZw81ug1vqJQL/GFqFQq6GEKTWq5Ij/FS89CyRv6d3YzRqgsb/4nSzGEGi68YeNbWVLBEAMLyJNWlyA+vRCDEUiYNRihD2YZT3A7oNQApmZ6Vz+t6GcfOZoKw2ioS7KI+OmtznLgzXBvC8s1S+jNhGpaxHEbEhl+egNCSDXQENXzNSVSLklfPnVJItBRPj95JNP3pZbLaKS302ZhlyShrwNrAiVuApM3UvDgLeRDBvX3XiVVVzRYTt6QPAVv/fOByjBBFRNwnREUDwqzgXn41CaxmpgRevMOrTeX2FfeSKJ0q6AVxyF1+X8hO7chEN1sWljAlmdo4SCldj8OTjrDsOheYl4NmNoPuSe60F1Eg6U0Ke8H73tvbGbDhzi+F3SqJArWBG3jJAzQnagE7mh7iRrLculD0thPuv8CRmLjiRT3wqidv+kFBw6Ef+mJJSNw/bJOvCbfdYkHfrPAUcN0YLO0HUpal0f5NKeOPT9H5EWINpQgyja7vO9RQFedMjXaPOH45DTiCUWIDekoLTwedh63yK9vsbp0Oiz6Dzrfa0rEfyucgJdNpJY2R1PpZCv3jVg4PcUUzdyERO+f88qUiv5LIaZV8PrE17gjTcaFQwF809Tze/38+7b73Pm2afRqVPL6dOaer3mtGs3wPvSUc2ZRpu1dVz1U5uN1dYDdUR4W+HRDsDbCudt6RoKhbjg9Etxr+lCEQuJptaRUJDPwEAjB+7Ba43gWZOC1Hk3E8peR1bnLow4vh/nXnUqnrgdgc6iWUXM/LTcErRoU3OVYKTORkrRUCoGYNR7IdADMuehdFmH7HKg6Q2WatHYsWOtS1dVVfHXBx7k0ccesfLXTjhhDNFiGcmmYtbJ6HYTzVOFHJMwNTuhuBpMw05aehzffPNNR2rDTjewuLiYyy+7nEi5hAMHWh0AACAASURBVCFHsJXn4647HKWZ4iHVrhn43StIdTtRbZ1RynJBDlv3IOYto8G2gpBh4qg8f8vxvmxF6115n+BSE1DVTAxbPaYOeoWdtE2nohGmPncCksdEsTlJUOOwmwohZ5BwRKFmbYCYLUS8U4EEnRFlI8g3GiNn1unGPk4vxJZ0edIyNqRsIKiH6D1vLLK59yhywFHJ+kE/WNoqsUWHoQSbXuTVpp+dNh9M35a7auQsRnKWIa87HtnKiTXQus7ASPIjR0PIy0/DLjVtM9Tm09zNgJoaQB/yA4rsxNTtSJqMrobAJ6OsOb7FU9DkMLahM/FGPWiaOBBrIKCpxGqCJMa5yFtxyi755AHXZjaNmMWEr9+xUq2EeueHL3zOuX861XqPNddKS0uZMmWK9f4T77uDzdoL8IZf3Df9YHv4wnn1j+0xbJuM2QF4W+HGDsDbCuf9qquQjfz2g6kEA36MBJ2+i8eSZLTsGK9tZtS8UYSi0cn39uPoGxojWzXFAX56eg1H/Tnfogz6tY0b9hGFi+vaJg0isRCp83yw67himUg2HT1kQ69PJlY6yLqsnj4DqXsxfXv35pF/PExiYiLjx4+nS5cueN2J2J0yo0ePZvLkydsivkLxa+HCRZhhFdUNkq5iRHTiMuL58cfv/udpynb3dAi6oYULF/L3vz9EdUUNck1nEorGNOlBEqAxnD2dcOJa6qvdyFo2MdZhT4xikwzcYtMS0ylbq+DSO+M0R1rjSnaRgzmblFSZ9FUX0xBfghpIxP2rqFyh+T7ezExclcORTBeCF9gQQCycsy2FJ9z1G4xQjGBlEgl56zin+jwL6H6T8hWJviRGxUaj/IoiT+Tf18g11DvrWJ9WRKVUhq4r5C0eQ6LeNFowTYmg20MUDZhKeHVf8KejZyxESq/DrFTA4YGSvqjm/o+GNumm7dQopFdD/9nE27KIRgz0aC26buIu2fEZEDRqUcdS5B4bcC473VLrOlgs6q2wTik0hw8lkoBur0JPWYUZX49jZcsDEDE5iOndjCnqAuq6gaaiD59I74VjcGo7prOE7bVsHDGdT6e9s+09I1hQ1rwZwNdtPTfec3WzhCfefPVtVhWs5L4H7j0owa649+0GeF845oA8Ws7x0w7IdZty0Q7A2xQv7aFNB+BthfN+1VVIJ99xy52omzszoFjk/7UPz2fbzHbXUQSorSkKWNRAwkoX1W5rNPLyXJK7eij8qQI6+ahKX4NmwMznW5q3aKJ2/gVSi9A1E4KpyJ4w3dYehteXZVE3VeSvILBgS4Wu6kfrOZmwGrTaOzwydruDM047kw9fnURCZ4VPP/uU+PjthVCbNm2yBCdycnIYN24ct9xyKytXrOHJpx6ziNk7bM8eEGkzr732Gm8+8y6OhsHYSwbvkxHB55iF3msFlQU9MEydjNxyK3+9PlyHU4/DFRhO2G8Q37MaXVmP3ZaKGTaRQy4aKCKqGyRvOIsEPYsQAaJxGyCljKhegux0YCs8d6+3zJQ0tF6fYdqCBAMBUrU0YhkaMVsYM2aS58sns64TXbWufJPxJXWJdXhtXlKzU9m8qZpQfQNdlx9FSrh5dFSCkmzlwImEnVVopsHgYQOsKNxnn33G+vXrqSrQsK/YO9ASlIEiZWgHS6qGTkthecsjXFc/MYLM3DgW/1RGeVEDPQYl0VAfI1AXpXBRNWsX1+x4zZ4LMBpMJFXFoAa5rjNqQ94e/e7PnoCtYiDe2L7ZD/bn503vWoiWtArd1JCxYdrCGHUyauFpzRI52ducy+Vp5ObayS1opFTbaqaps+7wL3n6vYeslIWtdt2fbmT9wjL8UhmyLDFl+rd75bEXp4aCPeWUU05h2rRp1jN1MG0sdvZNuwHe5w8Q4L2mA/Duz8/sfrtWB+BtG1cLUYrjDz2B+JoedCs6er+rGLXNKnY/ioj+jrgsl+xBibiT7Cz5fC2jbu1B196NEWzxZV24uJrnbp5j/b1ni2GmryCc9gtG0I1HbAwMN1rCarydNpO37EwrKueTN1A86GeM5QLwRq29Q7jn1+jRIA6PA1MxkXQJQ1JAjSJrMk89/yTDhw9vTzf8z40t6Nxmfj8L2/yLsP1KFnh3joi5SqkNzsU+wI+qJeDfbMcep0N1L8xwo7KVkPiVsucgJxTjiDixB7qgx23CqNMZVHMqy/p8j6Q4CQbKsUXjsUd7YCavxFg+BlXae16uLmSEe/6bZFsSETlE1B3jmylfM2nSJD6e8DF19XWo9Spjyk/l+7wpXDb+Mmpra6mvr+frL77BHU6j14LTUaWmsz8s7DqROrmYuAw7/Qb348EHH7Q4zCsrK/n66695792PaJiXhcvfSNq/gyWuhcQyBo7M54gRp7JuSS3fvlWwpUkEBkyl1qgl0TcYaUPzKf4e+PQ4C+h++vTyfTy3pkWLZtpqkAbMR5nfdEl4ffiXsGQ4jkjb8Bm35gOmOevAFUBPLcZUwkhVXZCqcrelszQltaUp1xdpE2g2jKFf0m/xGOyx7dF7IVdcMvR7bnxyHKNGbVcIEwXOomht3szF3HTntcycOXO3dQTihGXu3LnWCdZDDz7KocNHcu1N438T6VftBXhDzx3blNvS5m1c105t8zHbasCOCG8rPNkBeFvhvF91jUQijDnsd/RdNNYixP9vMQF2f/fUEAvwli6u46enVzPnzfWIn18xeQS9jmg8/i0vbsCTYOeG47/aPehVGnAOnAc2n9XeTrJVRBeM1GOLKnRdeRIOi6rK4qhgce7HBN2bcDidKE4JIqLoT0duSETbGI+WtJFYYpDEVK8laykiuR3Wth4Q1GTv/usDqMjAu3Hf6mm+7h+DqhMtOG1LHuiWKs0t06o2PyJ+QA1dunRmY/HGRonuKg9SkorTJhHTTDwOD5trN6HanXRe/gf8SSUEu06F5YeBkWKxb+zOxDND9ykY3gp8MR/3PXwfp50m5gEv/vNFPp3wKTlmFwauH8Qqz0orZ9eh24m6YqgBN0OXXbSDnPK+PBl0VLEybzKXXH8eZ511liW1LADv5s0VrFlciC3YA13ZiFTVDbnsEGs4gyieQ6eSGh8ly67SI8HDcddcQ9jlYvXSMp69dMP2y0oRSNgM4vi8BdZjUOMGYZco7raxTMhdjZFYiOJQMAUTiihSm38UCttPSvZ26VivKRj2CKqZiGxRkNmIrs3HEW1n0QyR5pS/CM1WhVLd1Yrk0nk9DslFqNKOrejwFnhs711C7gKUXqvw2FQiWoSs1UNI9W9nWAgoFZQeNp17Hr+VESO28yiL05KbbryFhQsWYYRs/P3Jv1jpVzubyM999snnke0Sd9/zF5KTk+nRo0ebr6O9Bmw3wPusiKDvf3Nd98P+v2gTr9gBeJvoqN016wC8rXDer7qKnNE7Ln6IvGUtzxNrm5m07SgC2I77dBTZQ5J4IHfyDpr24yaOZsCZ2QT8Ya4/5ht6Dk6xjkp3ifJ2WkpCVjVpK4dYeb8W5dQWVgqb7sYWbKy6jknVLB75vhV5IyqTn9eHunAFRkU8RlFPpP7ziEQN3PEOLrnsIosWTkRDysrKLHlLj2fHXOO29cR/12iCT3pfR6RCjW32F2tRVx+KXd8380E9s9Dz12NsHoGnUyk46wms6SnC85bzNO8aUoYtsXhE77//fr7//nvkmA0CElfnBRjeLRG328Y//lPLwioPnVZeZqVS1GQuJBS3ApxhHCvOQPoV6DVcFRBXBw1JaKE6tJE/ccstt1gg9Nc2f/587rjuDmx2G8ecegyHHHIIvXr1Yvny5Tz1txcw6h3k1gzHu2nvMsBbxyzq9SN5pyZzyRUX0q9fP+vHzz//PB+++TGKJKMuECkYO0aLNbmG7KN+4MHOjScj9i6dcfXuhXPwYFYuXcY/X3mdsv/0gyYIJLTF0yiYT+i2AnX+ueiy4LA1LMGRpprI5TUJg70CTY0hu0zk3CIIu1CCKcjr+u2zYLCp1/p1u4inAD1nOfLGgUjievU2lA3tq8il9Z1KaiSZ7ILDCDl9uMLbNwWRlDIKek3lg8lvkpS064bMorA87RLKFw0jvfcqPOkRzht7Ft9N+ZGe3XqwfOlShGz2Pfff3ebSvC3xb0v6tBvgfeYAAd4/dwDeljwHB32fDsDbNrdIRBk/eXoK3RY2RpX+W0zk9t637nSWTirlX2dvV58ZeFaOJQOaf34CagrccPisbUse+0AaPQcnkZHVKF2ranZeOnSuxRm8ezNZ1O91qoxNJMelccY5p3LzzTdbFGzDhx5F9cYKMrJSuPa2q7n00kt3GeLvf/8711133Q45vP8t/m/rdYgj/IsuvJz6Gj8OtwO73BhV79IjiZ49e1hypWITIY7mv/nqe6IL+mOr3jWvVVBExRKL0ewlGKaGs+JINPwE8yajuE3GXXepdT+ee+5lpM39aVjbC8PwEZf3M2QE+WDCmxbTxrVXX4vkkzBcBn/ua+PYHA8v/KeWbyskPIvPw6moOEwPpdJcgvlzSfDmYrPJmIJaz6cie2IYtSpyYoAYPvL65fHqm8/t1m1iY5SZuStVmmj83Xff8dzjr+IsykYxZVyVmTh9KaiKhKrtCgLFEfnygR/h7QKffv7ptutdetEfKZpj4igSAGzH510A3u7Hz+DuzD0zOvyzsoYVhW6S0mOodgldUwibfoJzjmyedLkAsHIQ9krJZcCwKbDgSBSj7TaLsYRlkF+AbemxqOG9C3i05PmOxZWj581BWj0QJbBnsY+WjL2nPpuln+mRKZFZ2RtXdPszVOZeim/4Sj77fsJuC2FFIESk1Xz/yTKql4+y6CUdXWbhcOoongpUl8KRo48kv08eF154YVtOeb+O1V6AN/h0y9k1WuMA9/Xft6Z7u/btiPC2wr0dgLcVztvSVUTLzhpzHtGF6fSqOjC8ga1fxe5HEMD2j5+OsiK7dyRv/2JvbG0Sf0UpvopEFn/T+OXuzWrggvvS2Pi5bilmSaZE5Wxph8jwjlcyKc6dRebR8PwrT+/ypSFAygcffMA111yz1yKP9lr/f9O4Ipo5/qprMPw2Nq0cid0tpE4MFKFPogZQ7BGioSA2VwRXnITNXokccEJpPrLdhaKC5M/CpicQGzQFJbmBtPRkitYX49RVNFlj9PGjrAiriLaff95YjjxqFJ98+CWBeUeiSoKvFCTXRuKHLOO7nyZa/3/2Gb+jorrcCvorQqkg4MRmeJElodAlZKq7k1gykqo+76OsHE6CUHnRDfxqORnhxuhqmWcJ5iGL+eKrz1pVyX777bczd84CHJF4VMOJIikoUSepJflWCo4adeIMpFrsEAVp0+h3SQoPP/73bY+J2KSdduIFhNZ7oKYzim+7OIAAvLnHz+CeLYD3/9k7CzArq+2N/07XdAcxDDN0h3QKCCoiioEKBqL3WhcVA1AwsQtb9G8BooKAEiIi3d01MDDddbr/z/7mEgMzzAxzxgHv7AefBzk717fPd9699lrvm2QyopAraKzTIZfUZ0rLhqIi/FVKVHIFVq+HBIWSj/ILSM0Pwr2rAo+XNgNX5BGUcgOu9ED8OxxDKQejVY3XK0epduJFcL1pcFg8KIsaQHYzXO1+QbG3F0pK46x9VVzKHGTtt0NGPHKvAplLi8yhAacGr86E3OaHx6Eu9zBx/hxOC4N4NCU4I04ii8yBQ4l/C9g1utPQ9vkTe74LmVKBXelEkx1NjLMl5tiTxHUK44PP3ykX7IrE2TvvvBu5U4MpPR5LeikDjtxQiKHBQWzeNGLigvjwww8uKxGJS9kDtQZ43x98KdOpcRv9hBU17qO2OqgHvDWwbD3grYHxzmk65uZ7cC6MI9JbdeUc34xcu70k9o/gkb8GYi128mzw/DKD5bXYSa4qm/79hjH8ng4Sb6/VZOPbh1dg31xVBgcne7t8Q5d+nXjrrbdqdzH/47273W4GDRpETqoDZ3oX5HIVHhEe4KlIQcqCXJ2FzO84wUEOiqwuIkJkyN160Fn5YdEsIiNLE5aE5KmQJRZXuuIAePWAwVhPeojuFCTRx+3buw/nke7Yc0s9ciGtsnBH7GLy5P8gknVEotfixYs5mXQMhccPnVkknxURr9dzSvD4GlVSvebpZTlMXXIH+QFJ2KI3ccsDI3nsscfKfcqCRUW860QYh5jnXXfdJUlOl1fEFbSgGdy2uBjVoa7Yg09A/H4QSls6IyGmMGKPdAe3kpOdf+fp9x+hV6+zSUqiz59//pnP3vscOVp0Si3O3BhsxxtLHt4pkWH8npvNQpMJpUxOM52OFoJL2j+gwjCT3cYSvskzYll3ywVTdsqPoeixia6ZbfEYZBzVnqKppSFdSlpzUpWBV8TmupGkz21eK16lklT/LJLUJ7FnuDGk1o4QizvoFDQ8LMVGq3TgVbiksAmZR41HYUXu0eDOjUBm8kee2wgUIgFVh0NXgDIqA29wHqisEmAXxeP14inyQ3msrK1r42vtCkqWAKmm1X7CZLmkO2Jo27YDEyY+yuxv5qDxUzN69Gji4+PLHV58H24aeRuWYhMKbaCkemkvkmPOCSGwaSrvvPuy9N2Jjo6ujen/7X3WFuA1vzfkb1+LGNDw+B91Mm5VBq0HvFWxUgV16gFvDYx3TlOR4PP729tpmHTpWaUiXlZ4Ui+3ImJ1t36bzN6FaedMzcuw7xoy9K7e5GUWsPH7w2z97iTGg5VzcgpFJK/chMkvm31ByzErC9D5ayVdeKH4VV9qzwI33HADuQfMKHRylB4/ZLoSso73wW2tPEZXzEquzicwOpOAhsUs/PX/KoybHjBgAAVHi3lo6oOMHz+eo0ePMuHRybgyAzEmN8XrCkSmz8IQnw66DJ549rEzSWZbtmzh6ceeJmurlkYt1TTJaoNWpmdvyHosuRa0YWoUhKDIDcfadB9BHg0qlRezQc5D/3lI8paJmG4BtGfOnMn6BX+hdagIVQZixUmRK59MZzHhMeGMuv1WifpJr9dLITTiUKBUKpkxYwYLfliIu1COI0WDv/MGvHIrBOfjDtoP/iYisztgKA4mvc1mPp1V1ku3ZMkS3pv+Hh6NB7VNSUNbLMkmM5HxJqKQk1ToZGjeILRePQdlh9jd6AATwyJRKhQSyD+/2NxuPsnJZv+xGJRZzcAWhsW9G32PfXhVQr9XSbglkJ6mjoQRhht3Gd5h0d9/NR856necwwGnsALGA4moLkI9Vns7sbRnd/N1KPxcoBZy4S5kdr/Sv5cYILsRWANQ2AJwy10oPOpanY7DbUPe/0ccRhfaIAVDEq3EhFj5ZW84z057o1p0huJwNm3aNNb9vg11EEx4/DEJHH/26UymTptSYWhNrS6wFjuvNcD7bh0B3ifqAW8tbpe667oe8PrG9gLwLvxkJYl7qy4VWd7IghHhl8d3+WZSf0MvNr8CtKaqgSUxnROK1eR02o1MXHPKvAT5BxMVHYXNaWHqtKm0bHl5cXr+DSb8W4f44IMPmPfFCjg6AmfAJsyGY9izL/QaXjAphYno1ptQ+8FVPTrzyqvTpHjE8srSpUt57dW3KSy2EtcohsVLz94MTJ8+nVV/bsZrdlN8OBGZpSUyv0wCWp5AbrDyr4fuYPjw4QzoMhjHnkbo22QS6mpMsTwfj8aBI60BSl0edn2eUBzG5bLS1BOBN1hFkcdIgdOMTq8jDH/sCgexljB6mZvjR9kY1VwKORiWRZHcRJ6jkODQEEoKiyTAqVKoCbDqaFoSDnIZO5VJZHuNuNwKZGoPKrkOj8OBnzsEh85Cn6PXsr7NEh5+5kGuu+66MyYZ0H8AJcYSWrRoQd7JHNrZ2lAQlAVyF/E5CTQpPsvAsCN8D3kBmTi9FvqEBDI04EKmgyKnk08KCjGWFJOcZSYi1sBQpYplbhduj4cwFOTJvfi5tVyfOgw1aklpzqqw4XS7+CNmE2qZmgKjFw71QFEB48XfuiH/O5hIgJPUz4NSUBSU7zWt6bwcnkJcjdci1waiPVaW39gauAJF+xReuNaO2+XEKpMzuLWH6Qs9qJvezqRJk6o9fGZmJrffPhpzgR2Dv5Y1Gy9fbtdqL+68BrUGeN+5pqZTu6T2hieXl2m3bss+3v5sLrl5RbRp0YTpk8YTFnLhdzQzO59Jr81k/+ETNIyJ4LXJD9AioWqJsFWdaL2Ht6qWKqdePeCtgfHOaTru7vHkLA0gPr+eC7Yii1oNWRxOWIpdXYxe78d11w2TFNOEd62+/D0WEEl/R1aZUWddgytkJcl5LgKUlcedR7b7g/sfGs3d994pTVQk4whyfEGdFBZWmpx4ugjp5ulPvYn5yBCC+mxg2bL5qNVnvXOi3ddff80vPy/AlNQQd2ZnAhOP4w7ai9sm45Z7bmLhT/NxbW+OK/EA6uwOyPMa4er6G16HDKfWRru2nUg7foLC4kKUQk5aCX5yLcIJ2Kg4iIG2TmgRnmDBCHLxYsNOAUZC8MeGAwUy/CllDhEl1Z3DwsBtaE90pERxGEWYlYFpN2Lw+mOT2dB6tSQHJLEnag19+/Xj5TdfkrzF1/YfRliaP+4AOYmWOJrbKwdyQgFuSfwi7tZqaFlBgp2Y02fHk9gpB5fdg1KvQu92S5A+xwNhJj+GFQxha8B+TuhTUHs0eBQyrDs74PX4ofJUNdyoMstdKZ97cPifRB6/k57XdWL96k24NvdC74nD5S1EPWAJXRrauLO7kYSGchGqzeYj8NVqPaGJnXn7nRmXtFARXrPxNyP2rEaEttzM9I+m0bOn7ynTLmlyPm5UW4DX9HbldIg+XorUnd/E3890azRZGHrn03w8fYIEdj/+eiEnUzN578VHLhh6zKPTGdirI3eNGsLiFRvZtvuwBI59WeoBbw2sWQ94a2C8c5oK4Ymbh9xB0OruBBHjm07/Eb14SY1cT3b0PvSmUOzBRfQa2F2KkfxfK/v372fb1p3ce99Zpglxha5QVA7KfGErATRvGj4W0+Y2OGUOPI02kHGwM3r1xTLdvUS23MOt4zpKTBjiqnbKlGns2L6NDh3bER4exZQpz5aZnkiOe+SuR8ne15qIrodZvan8BBAR5zhmzBhyD6mQaYuYNH0CMz/7jptvvZ78/HxmfvolhuQehFuvwuP1YGy3EG+wCYNBR6f2Xdi4ZT0up5MGzmD6F3cgWFbqxVXWgsrhOtludutTsdscqDQawkwxBLqCyI1JovnBXuwK30b3m9tLqn4NG5YmgL0w+QUW/76YXqc60M2/6gdhExY2t/iL60OD6KgpS23mcLn4Ni8Xo8PBLrMZtUyJU1DMOd14HUrau5rjULg4pUuj6JQG/6Jr8WJCTghyz5Wl/ljTPe9WluBxKZG3+AtDYxlfz/qC4dcPx52qQasKwh1UiEvlRqO10jJYyZtjrGg1MOknDdmOKEaNvg8RAnSp5fHHH2fLsgKMJ66iWLaSXjdp+OGHHy61u8u6Xa0B3jfrCPA+fRbwLl+9lflL1vLFWxOlZyAAcJ+Rj7F1yaeo1Wc599Mycxn72HT+/PFdSU2vtko94K2BZesBbw2Md17Te0bdj315LBHm+mv5UtN4SI5YSW7cIWQ5gSgiTHTs0pn3Z4gXQuWxvr57MpdHT4ISzGQyERtbysN64sQJScK3besOdLmqIwkJpXy1tVXefPNNlsxZhuN4WzA1Q9lyIdnJncBzcdGOyBbb6XtdE1q2SmT3zr3cd/89/PbrMv4z4WG02guVyY4fP869947H65UxsN/VvPjK5DNLEgltAuhqNBpEFrs4KD5w/0RMJ+2ENzOwcMlZQCBif3ds2IEuvSt6Y3MK283H5iyme4/utGnTRgIjd955J2qvmnElAwlS1J7gwUr7Dg6rUmjiH0KSrAiZR05neQz5CjPHUotxNXCw7PelUuzw6SKoCkUMsdam5e7cm6rFSStCETY02YhXV0Ifg4ae/qVrK7bbeTE9BY0XnjJ054SzAB06TlJEocdKicdOsFzDNk8hJcmNUaR1RY6mtrbUZduvS2bE220FHqWVXlf15ZU3n8doNDJ06LV43V7i4htJzC/du3fno48+YuHC+fz0kBE/FUyc5Y9VpeOrOb9XGLZTlYXfPeZf7F7ij8fUgKDWi/jXxHHSfv0nltoCvMY3htWJufyfWXZm3M+//438wmImP3bXmX/rO/IxvpsxmbiGZynqVq7byaxf/pBCGTZuP0CjmAiee3ws8Y18m5hYD3hrsCXqAW8NjHdeU3GNOajvNSjSg7Fpcgg81o14TwffDXCF9ZSrOERat1XYHXZsRichUcEsXbq4RrRRV5gJKpyu2CuzZs3iu2++Z9z4+6SElo4dO5KSklJrCkvZ2dncdvPtmFINaLJ6o2i5koxDPZFzkStuRRGxnTYw5YWnaNeuHbt27eKaayqPqxNMB35+fmUONgLcPvvssxzYn8RV3dqzYd0GrDY7couakJgQ5v/6QxkZ1RdffJG5c3/ET2lAqwrErbQjd4JcL+P64SOIi2/I1ElTCQwM4D7rIKKV5bMu+GLPpNmy+SVwM5MU15BFETqUBOJHLkZ+Vu3kquH9EZRm5xdBqbfy3WUMyOnJAW0SVrmJHEMBodYQ2pibofNqLwqEMxRZJDU+hp+/lWiFnBEBAWSazXxemM8YWWvCVFrWWtP405vBSGVjOqpLWTM22TLZ78ziSLYBzYlL91L6wnZ10YdbUYir9XKatW3Oo0+Nlw5IQt5X3HKIhMqYmNJbOPE97NOrBzJ5ES+M0KDW6Jm9Xk+B2YWTGBaccwCr6jpeefkNXG4ra5YkkbenB/r4tYTEmVn2++KqdnHF1as1wPv6tXViC/9nl54Z9/2Z83C7PTz5r1vP/NuQ2ycy45XHysTnLli2jpff+45PXn+cbh1b8u3Py1m4bD0Lv37Fp2uoB7w1MGc94K2B8cppKrLRx44ei8qho9WxG9E6BMn8/54387RpDradj1GbgdNpY8QNNzH1hSm+NfgV3pvThgZQBgAAIABJREFU6TzDLyw8no88PIFvvv2y1kQ0Xn/9dX59/ygOkz+OyO3Y0m6r0IK6wFQUUTu474GbeOSRC+PVzm945MgRKTxDeKqFJ1cAjN27d0tAUIBd8d2Y+NhkKAjGbg7GY/fHv8k+Etq04Yuv373Amya84fffdz/ZmXkotwzF1GgxFm0hen8DKpWSmMgGBAcFs37zWpp4w7hXdn2VYnYr2zKCzcCMDbfcjcXjIEdViNKpYKV+D/92dSdIWdaTnOkpZGnICYKig3nn0w/KHOh+/PFHlnz4Ky6bHZeyiAayaBI8gRxRF3Pck4MePY0tsbQvrFiVrFBZwkb/rWQo8ugZrCRYpuCIGzp5otjhTidH7eU6nYvdZi33adqz25VPsqcEt9vMDo8d+cY7quVdrsw+V8rnbpkRT+AJ5B0OSzR5y+Yvwet1owlTMXToUP7zn/9IgPeZiZPYvnM9NpuFQP8AIteOQo4Ke0IqbW735/kXprBp0ybpQFrejcZpe7zx+jskNE3gsy8+xVsSRPbuHoKLjcA2q/jxtxlnbnauFPtVZ561BnhfqyPAO+ks4P1i1m/k5BXx3IQxZ0zSe8SjzPnkORrFlh4wRflz3Q4+/XYR8798Sfp/AZI7XzOe1fM/ICjwbE5AdexaXt16wFsDC9YD3hoYr4KmL059ifW/7aL57pEoZLVLpeP72fuuR6/Xxb4mP+KILiAiMIoF52Tr+26Uf1ZPBw8epKioqNaSW558/Fl2b96NTKPBbi8Ep46svVcjV3hQ+eeh0JklUQeFtpCghiamTnua/v1LM9pXr14teXiFpzgvPQ9TthGZV05AgwBST6VikBlweB2oFCqKrUU09kZw3JaJR++iUWRjxoy7l8bxDZg9ew47Nh2hOFWBMiKTxUt/lbzBFZXrr72R/OP5OO0K1DEOCXjs2LEDjUpDZHQkySeSkblk6PRagoo13CsfhtFjYW3kIRqYQmhtbSgxFgggm6rL54Q3jXRtFoG2IPRKLf5eA7lqI7GC+1fjIsOQh1flpMRhxeiy0jXCSlKungKrFz+NjEdsF3q4CzBzQpbPbv9MNA2CaBAbS2FOPpkn0zB6bAwriae97KwIhVirCFuwYON71TZ07gCaGuNJMDWWxLdPF7PHwoqmq2kZLMNhM2K0ekgSMs0eL3jdtNYoeKiFjt+PGTlo9adY5cWCHatbiInY8SLHcSwOXVrdKFbV9bfTgxtv623g8OBNbYItcD9G/+NoA2SsXvNXmcNJly5dpBj1qAMDaSbrIU09uetCflwxU/q7UA48Xc6PvRdhET9+8zNasY/NcWTtaSVV9eIiqscqlq74qUziZl3bxdfj1xbgLZl+lvXE13O+WH8Bk5ec+XjF2u18P+8PKYRBlOzcQq696xm2LP1UYnU5XQ4npfDIlA/488d3pH8SgLfTkPGsX/Qh/n6+S8yuB7w12An1gLcGxqugqfDaDRlyPc3Xj0Djrjpll+9nUvc9ZvvtJaXZaqwuKzt37axRTFzdr6b2ZyA8o+LHVKU6mwzhy1HFD7oYIykpSQpRuGXUnRzckIl/Yy/9+vRCq1dIXtqQkBApxjE1NVViZPjug+/QlWgwqPxQW1VEF0SgcClRehXkafPRe/REO6IwY2U/+8mMSeEe43U4vU6+iljOx//3icTmIBg5BGODiF+eP38+/fr146qrrrroEkXM79i772bvnn1cffUASXZ6/fr1bN++nYiQaOISGvLpp5/hdHjxM2jwFtuQqTU0bZdATGgU+zdup7E1hiOqk7i0cnoP6CtJCWOCyOACurfUM6CZk8UHNOjV8GBfG/+3KZDdyTI+v1Gw1ZaWQpOb8fNVtMhuSGd9AiHnMDmcriNYFvYpMilROQl2aQhyGyTmh2bei4dbnJDn8ZN5I3G5iQzQ9MQuc5Chyeag/gid4/K5u3nZsBOXx4PynDj4rw/ks9ri4J6uNpqFKzDoIMpfEq9j6mI1638PIcRUM8pEX+7Dv7svU/h6bIF7CYwJ4IknH6dv375l4q3FfMReNOdZ6XzoMemmQDzLE+1m8enPH5GYmHhmyi+//Boet5vnp05GxOXb7XZG3ziO/H3d8Lq1cI5MsyL8ECPuD0WE5/yTS60B3levrxOzBUw5G35ittgYMnoi70x7iC7tmzN9xmysVjuvTR7PiZRM0jNz6dOtnTTPkfc9x9hbruHGob2ZNX8Fv63YyE+fv+DTNdQD3hqYsx7w1sB4F2kqYsWG972Vhrv6EuDxrWxn7cy4dnpNTvyTXL+juGRWbhhxA88//3ztDFTf6yVZ4M8//+TVCdORBSq44ZbryMnJwVhoomffHqxes4b0w2no7To6pbcj2lO15Ivt3h24Yy0MNnaW5rQuYD/u9hre/3wGQvFMJAqlpaXx848LePzJR6vMUiHigkfddDslxiIi/BsRmxhM8+bNOXTgMDK5kslTnpbEJgQtmojZbNCgNBlPiEC8//77Eget3eVg2fKl3HXLtUQqjLx3T/lCL19tDMZaZOPhnp4ydk0pgMd+U5FYHMn18tL1+aqsytvLNv9ceni7kEwyxSHZ3Byj5NpGQZUO8cv2HE5GwvPX2lCeR/pxKMPLe2sNpBYr8bjUyPf1QGG8eKJipQNeQRVsnkxcHZZz78NjGDduXIUz/+rTb/n+269J3HqfxPRhVxSS0nYJX/7yCXFxpZzJ4vB1zeCheDxCLlmN12mnyFmIyhSGPVV4I/9rfHk+hoRNuG02WnZL5LvZX1xBFqv+VGsL8Ba/Mrz6k/FBi8DnfivTy8bt+3n9wznkFRTToU0C058dL4Up/LjoL/5Ys52v3n1aqp+SnsMTL3yMYGxIiIvl5afvo0l90poPnoiPuqgHvD4yZDndrF27lree+IJGe/qgdNdeBnntraBmPZsNaRxt+ZukBJWQkMjMr74ok5RUs97rW/vCAmNH3E3crpaobVqSEw7jLZRRIivBpjLjCrBzU/JwNFQvLGe9biPKKBdD8rpIU9yq2M+B6CzmLJgjea4FQ8OlFBFvOfOzr/nhpzlS8prD7kWp9/Du++/SunXrCq+M+3Xvj7nQjUNlJShEj/hejrl9BF2Cj/HwMC3l6Wc892sg1zUy0z2uLHpMz7fxwAI9Y0y9iFb69vbmN+cOrP7JyNWCK9fLtKuqnoQ360gBJSEeJg60oFJAntHL3L0GmgbbiAzwsilZy1+HlYQVNCBFVoxsz/D/ibheoTjnbPUDtzw4UrqxKK+IfXXs2DF6dO9JoDaMhsHRlCiLRcwJ3br14IOP35Vi0EUC4pxvfyFnZxvw2pEHHkCh0uG0BuMuiiW4/SYsOX4YArXIAvKwO8wE+gWxdPmSWruxuZTvUW20qTXA+3IdAd7nywLe2rDZpfZZ7+G9VMuBpC8v/hOE9PXFtxYQV9P33zNeuj4OtcZhSGtKWEFz3w5ymfaWHb2TnPjdRDcKlySD77vvvvpwhsvsWQlvl+FICImH2lwwM4vczJbmfzLs5CAp/rWqJVeex+bGmxiV2xuNTMMG/wMcj8hh/EPjJQlfXxQRliGukUXcb1U4jEUy4OTJkyXOX7EXBcC5ZvA1uNwFTL/WxFUtz6qwbTouZ+GeYMIN8GQ30wXT/XqDgx/X+TPJz7f8oBmeAn7Sb+ejLv74nSPSUZm99mQX83u+i6MWBx+PtBAZWhoK88iPeo4fUxKrjEEZWYwqNZIuxR0lz+XOkD0cVGag2Fs3YKKyNfn6c7u3AFmrddx47xAee+LfF3QvkiOFKtrdd98jhSjotFp69e4lhdoIgRQRejNixI0Y8924nTLcSqNES+dwetH7y5AXNUWvk+E0pNKtZ1cp1lckt+m0ATz62L/+Jw75tQZ4X6obhpHAqb/6ehv6rL96wFsDU9YD3hoYrwpN09PT+emnn2jWrBlvvfkWGksQzXfchuycxJQqdHPFVBExm8kdFhOYoGXUbcMZNWrUFTP3K3WiAgAKr2lFUr/nr+uT9z7l9yV/EFnYkHYny7+WF8k+axKXMDCtTxnVscpstMNvF44gE9cUl/Zrldn4Kux3UMp4+ZWXpWQ8ATirOtfT4/lSoOOJJ55gx5pt9G/vYOpIpzTEluMKlhwMwumEO1uYaF2BdszBVBfPrdAzrqgvfuqycsWV2eZin2dRws+GbbzVRk2IoeoJLu9sy+eUzsXTA520jjkbfrFwp4fvtwVx09ELWTgO+x1lm+YYygMjajLlK6qt223D3WUpKzYvKPeQJEIVtm/exSczPuWND16VGBVEWNqwoddRXFyCvcAPv1A3Cq0HU7YanU6Jv9Ifd3AB1jwZ/pF+LF7y8xkWBxEnv3PnTjp16vQ/wTleW4C36MW62aNB0xZdtvu7HvDW4NHUA94aGK+KTQsKCiSSfeEp6NOnD68/+wERKR1xK114dRbURSEE59eu6EAVp1qDal7Sw7eQG7mf0JhA5i392acv+ksBSTVYzBXRVNjk448+l1gTHnn0X0RGnqXIqWgB48c8iHyXhvis5ui9F6fK2dVoE/ISG33svatlj+WNVhJDAL0KW0vthHLYwuD1WPQ2GkSE4nXYMAQG0LHP1dx8880XJA+dO9jzk54h/9RxPFY7gbGxTH3jHQyGSweaAogM7N8fmczKf/pYaB6nY96uYI4cNeDAzpyxRZWudc4WJ38kBdKlsCVt8U0s7GFPBruCTvBGF12l45+usCM1n+9K3EwY4KVDjL1Mu+Q8eHS+nvBTkQyyl2VoyFJlsdp/PeaURuhN/0yp2/ONKNgSzKHraDNSz2effVqujQWtnlBDFHtS3CAM6D+AnJw8lEoVAe5IijKD8W+eisehokPnVvQb0Eu6NRDeYQGQzz/Ebdu2TaLoCw4OrvIzvVIr1hrgfaGOAO8L9YD3St2LF513PeD9+x7raS/V4AHDUBQE4mcNxijLRRXhReU2YMiLRpcbhb74wuQgl9KKWZsPXhl6exAq16X/6NfGivdGLqI4+ggTJ07kjjvu8PkQU6ZMkRLeLsaD6fNBr4AOxQ2CUDZr1aqVxIJwsSKSt2a9MJeeJyqmqHLj4lj0ASz+Jmx2K7mqbO5MF7ykVeeSduBkbcJa2pga0cwcy0ldLmuDdzK1lQyPTEFjg5LjRjurC+GIxctnPy64IP5WANOJ94+lo6eA1v4KonQKfj1RzGqzkohGcUTGxPDMlNIESKWyfMlc4fkWjBDnqvrNmzePr756FYdZQ4zGH73egPxQLF6dh5yIJGIjXYSpXUzq5+JiYoDFFnhuiQxNlj/DZQNqvFMERdkP/tt4sqmJqJDKk9S+3p1HsgOu72NhcAXCjluOwwt/6hlwcIAU2nC6zI6eh8cDyj2313jeV0IHTk86rs4rUXgN2B1Wxvzrdv710P0XnbrYfyLBUrAzXH31ICiMIiAkjHETBkm3dcJxUVkxm83S3rzUmPXK+r+cPq8twFs47cY6WWbwiwvrZNyqDFrv4a2KlSqoUw94a2C8S2y6aNEiPpo2i3b7buZQ5BpsjY8gs6jQy8JRCGVSrwddbiNkxtMDyCnxO4bSL1ji7nQrjMTu64vOcRGFrEuc26U0MytTSeq6hIVLFhIUVPmP9aWMUd+mZhYQh63brxlN+109CaR8j5PgqV2buByZ2kWTrEao0RBpCyPAc5Z/tDqz+D1hGW2KG3MsfB9vd/Iv1+O/shCWFCtp1aGTRBUlGBxEEd+R1bM/5/mEstf7JoeDgyUe/si2szcTdGo/3BonLdq1oG+/3gwfPpxly5bx/jvv4/K6KMorJqpBJC1btqRDhw7MmvWdEOglmGD6HbiJTe2WEhtjp3m0gw4xJhxuORlFKlYf0xOld/N077O0ZOevPblAxivLA7k1vxtaLpRYro6thO3nBOxArXQwsYWCYO2FIF6AsOn7Cjhoc9Ek0ItOp+L14RYUFZxFpi7RkbImmsHuq8tMZUXAX5xwZmJIvgkFZ6WQqzPfK62uy+8Y3uAMnJGpKLUeFv226KI3C6fXJxg/XnvpDRxmD9oQNStXLvfpzdWVZseK5ltrgHdq3VDpBb+04LJ9NPWAtwaPph7w1sB4NWg69tZ7sG+IwGmSEXWTjTvG3cILk16lzcY78CjcZEXuktTJQIZC4UXjDiY6t6M0ogMLRzouJ7wwgdDkCxOOajAtqalTZkUmc2HXFFISUoDdZUGudhOV3Ry148LM8Q3quSg7ZLF58+aaDl3fvpYsIK5o7xh8Fz32D5aSycorWYY09kVvpcupDjRW1pxKb1XCakIL1CjjU3mmVcUsJatz7ZhdXo6anOTK/bjqmuto0qQJP370Nk82VhCqvTBp7vWjFgrWt6apuR0mVRFZ+lNYwgpwBziQy5TojoQSa2nMQesWCmIzsflZ8FeEEhDlIEBdjN+h7nQwdeS4Nglb3628dXPBBSZZuEfN2mN+PNjBRLNyCBNyTDKe/cNAr6y2yDwymiJUFS+92HCyWp6ELCCFZzpd6K1/5lAR/RJshOgcXFPJ1z6nyMPDPxrouX8IEeqyk7fKbRzTHme3/z6c6Wo0edfikuej8TS+9MlfAS3dqkxocBJZXKoUAnTDDZUnRInY3h9++EFKXnv66aernXgp2B0quoG4AkxW5SnWGuB9/qYqz8GXFYNf/sWX3fm0r3rAWwNz1gPeGhivBk2FVOWk/0wlaNtVuPsns2jlLO699X5svzegobU09rGysrflXKIP9ybIE4tX5sDin4nMqUFvjaqsKS7sWGJScXjsBObF49SnoS2Jw9wwnUORy7DYiwkODMLhdOARSUaiR48MbX4MKqUXtSuU+OT+yJCTp02Gaw8z6+dvqp2MVOlE6ytUyQIiTlyIRVys3HHdXTTYGU9DR1OpmrgtcMmdUsb5sfh9WLTFNMyLItHom3jyZS1+lbyPH3apOsuD1eXiq1QPRV4ZTzWWozlHyej02rJMFj45qaTBqrPa9qc/88jcyL1lqcSOO3YT4Awn3BDLjiaLsIYW0mPf1UQpo1gevZyoVnm8cmMhhnKmKXh3v9gQQrTOzUNXlfX2PrUogt05RXg8NtyoCFP4MdbUhUDlpcmIrlMdJ12XwutdynrUbQ4Hu/ItzMn18Op1JTQMvXh4icMN/5mvI2zNVbTQNqtwSwhhhbnh8zHbbSgcepQOJcoMIc9c9TjiKm3Oy6CS2/84rqYbRfwLRfY8WrRoJgHZyooIGZo9ey67du7mw4/eqzRs6Pz+BAPExVQEKxv/Svm8tgBvwZS6Abwhr9YD3itl71VrnvWAt1rmqlHlwsLCMgkMb782gzU/bcGapcbdJIXe/XuxeflmEvbcisFb+VVjLinkt9tJ6MlWZETvxGSxogl2E1DYjCYpFceYFWuOcrzjCoJ0EYSERGAqKCbfkYm52ImqRE2RNgevx830N6ZLXpDT1E8iOePOO+4kNCScHr268efXO4k/NASZW8HJbr/x41//Jylp1Ze/3wLiuvt0rKpIYhNxvYIR4XR577332PP5ITrn9pL+6VDMLgqD8pHJvDi8dsJMofTILeXN9VXZF3AQQ/sk/tOk6oC3KmOLA9jLhx2o/hxAGBfnqhWhAn+GfA9oGFxwGynuE6T1XEtAQTTqhvlc3zGPIa3d6CqZ4ndb/TierSZEbSZA4WXzSS3m1FiyNOlo/DV8+c2Xknrbom9+4EFLb9Ty6q95rnIrttBigv0VuBwelBo5TheSkES4wUvfJg56x4tbn4uXt1YFcHBzJIPySiWhKyqbLJs5HlZIm+TrUXk1JAVtpyhqL44iFdqM61DKqw/c3Zo0aLoPZ5EKeXg28j3DUXJpITGVrbM6n4uDkBsrRaE/4wgt4b77x/L4449X2oWQ+s7NzaV3795VosCrtMN/aIVaA7yTb64Ti4VMn18n41Zl0HoPb1WsVEGdcwFvfSZ8DQxZhaYz3vuIXn170LnzWSqoxYsX884z71Jy0IOnfTF+/gGockPpdOxCOqHyhrAoijmU8Adaqx+tU4ZJVbY2+Z6IrJbEWspSTu2NXkKufh8NI5oy6KaekkSrKOK5CznkDRs28Prrb5KQEM/hg0l88OE7kmLVueXcPfLKK6+wed4hmu4dzsm4FbgTc/nt90X1Xt4q7IWaVhFXrS+98AZj7r6VvLw8idhe8IYK4Hv9sJHcNXYMd9xZSgn30JhHsB110TGpBzas7Gy6gTBbEM2KmkjxuS7cKE8rRNV0Yue139jpV15tpfR53OP7yU5yN7WkcX7lIT3p8mR2x60g7khXimSZNL8lmUEtPTSLcNH44nl+ZVazPgmySlQU2PTY7ApSC7zsPgTaYA1L/1gi1b3tulE0LdZxtbNqtzTnDiA8rj8ErGZI6xK6JMqI8gOzE0IMVBinW/a7Cc8tC8CbEUfrQ90qfZLzA3/FaHHTOvM6DK7S2wEbZpLDtlAUdhSygtAWXY+cC+OJXfIi5B5/5OfsG3eblei0JuLzGlCiNVKsMlKkKEF+sDcyVzRyT/UPAZUuohoVxOHH2O47HJjYtGVjlcQgDh8+TMOGDWvEDFKNKV6xVWsL8OZPqhtay9DX5l22z6Ie8Nbg0ZwGvHfddRciq1kQb4eGhlaoWlSDoeqbnmcBEfM6470PSc1IQbFdjVPrz7UTu5KRks3BFUcIT+9CQ1fbanP2Orw2DndaSJMdg9DKQqWr6/2R8zHGphAdHc3cuT/45AX+1ltvsXjuctrvuoeTURswtTjC8uXLq/RDUr8ZamYBcfBYs2YNf/21lk0btpLYrDn+egMBwQYyMnJ47vmJTHp4MkajiYRjbWhgLJVGzVKncSB2ByOzfCMCcbFVFCgLONBuDW+0FmpmUlCMz8p7J+zkbGlNk7zKAa8YdFPAcgpiUsjOyCI8ysvSpwz46arOPFHRxJfsUfLFOhnf/LBYuu4WsdK3X3MDPaxxtKfRJR0kZvv9RWSsl5evK6mSvb7arCch1MqOdA1Hd8bSJ31gldqJSlvYxuGQFHR5jYkraoufIxQBDAuUaRxvsAq724RSq0ZhjwNVCugUOPMboIvMwOWWobAH4TbqUcYm07OgG00sjc+8r4wyM4u0izHE2fCixbLmFhR1CHptDeZjDcrl9rtv5/HHJ1zURhaLBUErJphhnnnmGa67TsgG16z8kx1KtQZ4n60jwPt6PeCt2W6/TFvXhzTU3YMRCQ03Dh/F4fWH8DfF0p3RHGwzl1c+eYHPP/+ck7tO0eXI/Si91c8Az/OkkNlyK80Pj8CiLuJgh7n07tuTN99802cL/vLLL/nu21m02TQGlcfA3p6f039wf6ZNm4ag5BEe4yFDhvhsvPqOzlpA2HfGe18w/l9jpANGTk4OIl6wQYMG0oF11MDbaJXUiXBrFAWaPIyaYiJNMayIXQgGF2NO+Z467vznU6Qs4niHP5nW0uBzwPvhSSfZm1rTKK9VlbaFzWtjVZvv6TmgF/HxTTi8bjav3miUZHhrWh7+0syhYg3PPPualNQkOLenPfscxsx8hhpb0NBbyoohPOlbZanovSo6EFvhsEUeE/MjNvD2jRYiKokG+HJrAHvWx2IJMOKfE0nX/E7VXo7wLO/THORkVDZWhxul14vKFELisf7YNMXYPHbM/unkRR7DK7eIyG+e1QwliSxWKA5QaHMyMLcfjWRnOYnFIXt98xWccGUzc4CCb/d52Zargo13Vnt+vmhQ5N2BJ2Erd/x7NBMmXBzsivGE82f6K28wbvw9NG586cl84sZF9CW+o0ePHpUksP+JpbYAb94zt9SJucLe+LlOxq3KoPUe3qpYqYI69YC3BsbzUdOZM79k3qwlWAoKCDrQm+Ku6/l1+SJmfPgRfy36iwY7hhIlr95L1yu8uq3mE57RkuCCJuzv9z1Tp01lwICac4aeu+x+fQbgtLjoc/IhCvSnUA4+hVcjY//efRJ3q07vx6Lf5tfz5/por1TWjaAfu/vOe2hwMIHY9DhK5CUc6rCCWI2eYo+bIIeb4y4nLlcAjYtD6VjYrrIuL/lzAXr+ajefN9ro0YpAVB+WT065SdnQjPj8tlXudZtuDe0ebiAdyF57eSqRtk3cfdWF7AxV7vCciku2ePl0WzBfffs9MTGlnLcC4Ex4+DH8nXKay6JZ5zyBV+5FqVQwrCSBDoom5Q611LOLPdp07rjKztirKvZCpxV6mbIkgNYZXYjN9k2iYZYyS7oR2hV8kEKsyC1+BORHo1WoKAxJpdh5Cl2AlmBdAEq1GovDitKu4tqswWe4mkscJaxp8yu3tFLhh52OMUrJG/zwGjn21aOrxel8Kc/i/DYl7MXedgMGf410K3Kx2waj0ShJwQtGhocffpgbb6w5D6zw7JaUlLBg/q+MufuOf2QscK0B3qcvTEz1xZ6orI+wN3+qrEqdfV4PeGtg+qoA3vMJ3M9NkKnB0PVNz7GAyAYWpPjLZq+nZLsRWQ8j69evZ9iwYdjT3HQ+dHGi9PKMafQUcbjV7wRo9OR5UunWvxPvv/++T+0u2AFuvvZm9DvbEhCiJ+RmI/fffz/fffed9MOyfdNOlv+1DJ3un5f57VND+qiz0dfeRcihKFqUtCWbTLa0XUkrlT9+Wp1gcMbidJJdpCJkxzCKWu7GHZhPm4wmNLLXnIbs/CX8GfcHw1vaGRSu8tHqznYzI9lJ1uZWxOVV3WNmx8qxHhuZ9cfXUkc3DR/EfZ1yGdapfOGK6k76/i+0HC9RoleqmffbAik7X9ziCDYAcT0uYqzfmv4uqDxc5deUq12JEn+vHxopDECEEvzBQWQJKdze3kbbxuDxgvy/0SCFJgg+L4/st11O5u4I5dpDVYv5r86a8sknU5nDcXUyVr0Tp9eKxWNB5VER4QxjgKU/KhSoKRubuyR8Edd3KmFU27P0dyuPWnhnpwLt9nurM4Ua1xXgvTj+Gwi2S0ISpxNwRccibEEIk5ymDRPAdPfu3fzxxx8cPpTE19/MPDO+AMLHjh2TpII5OOZVAAAgAElEQVQvtYhwl3+qCEVtAd7cOgK84fWA91K3+eXdriqA99wViBe4AMDnU638k+OT/s4nOHjwYEx75Shj7Lz6wUvSVfXrL7+N3qajc9J4FJeQXGRUZ5HRbAsPvDJaIub3dRE/ENOffxuz0cTVN/SVrnVFEpyIURaSm6tWreLbb7/19bD1/Z1ngW+++YbVn2+k89FSJoYVMQuwBpqJTRqICKGVyOW8XvQFUShdpQeQ/IjDlMQdRq1wccOpoT61qQAbmzot5smmEF4ZDUI1R37/hIPsTc1pUtC+Wi1TQg4Rc4+O5158jkceeYRNG9ayYYoclQ9iG+ZvcDBzkwpXrp6Bd14jxX+eLkVFRYwaOQpzupX2A9vSJL4p21esQYkGNTKsVgtKGZgUJhLCTISEBWO1y0jLdxNk8KKUydibK+Oe1nZu6+Eqs+ZXluvJ2BdLr8yLszJUy1DlVE5VpLEybBUxbg82fThN8+MkWjuXy0M7axtUqMiT53O47XJe7SvHT1PqnU4v8TJ5nZvsNZ3Re6p+QKnpfEV7mzuZ4na/SYfvHbu289i//0Onbh259957JfYFQeUnQPC5v18V/ZaJMKJLkbUWYFn0GRBQ92wVvrBpeX3UFuDNecr3B7mq2CDirR+rUq1O6tR7eGtg9uoC3oqGEqflekqqGjyI/zZt27YtxiwH/nkNcSVmsmf/LumAcc2QazCdNDMw7ylU3uplO4s4vKxea5m3YlbNJ3heD1arVZITTjuZTkRMODNnzpRe7p06dMVZ7GbyS5NYvGwRBj89H3300T/Ww+Fzw15Ch+PG3o96gx+tijpiwcTuTktwOdRErytfQtauLiGjywoC5f5YZSa0XjkxWdG0sfgOlKxrvpLEsDwSAjQMCK9+LHpFZphx0knmphY0yat6SMPpvjY1W8jMZZ8QERHBvXeMYGRiCtd1qnkCm+j/xUX+rD3u5oYRIxk4cKDkPRQxva+9/Bohh1uS2+gQMY0bMPcXQZVWWrKyshD0V4cOHeLEkT2YHXJJFU7IaAswJuI/RbKpSIp7/LGHmT6omA7xajIKwKuQkVEMb/9hYOihmy/wtl7CNqqwycLwxXh1Zp7R9mCHN4MUmRkFMrYUZ9I8rznd3V3YwS60vQ8zrZv8TOjAE6s8HPuzGXJ7JxTlMD74co6n+xLe8vzI77EHmggO00pe2w/enMH2Tw9SlJjOvN/mId5dwqMrnDfiNk0kp/k6uVLMRySCC6pAIUlc03Janr6m/fi6fa0B3ol1I38d8fZcX5vIZ/3VA94amNJXgLcGU6hveo4FBN3U6JvGUJJThNlkxBBrkF7W4kU8dPD1BObE03B/qQevqiUn+AjePql8v+DsFV1V21al3t69eyXqnuDgYMmzK36g33jjDeb9PI+bR90sJVHlZhfg8bgkL8djEx6tSrf1daphgbG3j8W2X0afzIFk69NIbbGF6/FjvsNOxLryEz/sXhs53Vdyc0YpZ7MNO7tiD2L1WuiXWjGPczWmJVXdHrSTrNAMesRYuafJhfzSYs+Lq+XqlA+SneRsaUXj3OqD8yxVCgc6rmL5iuUIbuz7br2Joe1cPNC/co7byubocsGzP6nYn6lE5g7C4bBh91gJKGiCS2XGq1ASrGyGX9ss2nZqyS233FKtpKgvvviC2bO/QO2yo9OHE2ZQUmz2orB7GHbitlqNjzUqjCyKXsr92iZEyMOweVy8Y9lGmCWcDtntWNvqLzQ4eak7NI0+G8L09B82UpxyrB4lijV3VWbCGn8ubhYcQUsxx6TTZ1APXn/9dUmq+qepi2iY1ZTswSf47odvpFjdjz/4nKkvTZYk0WtTEU04LcQBpqZFAGdx8Dk3NKOmffqifW0B3uwn6wbwRr5TD3h9sS8uuz5qE/Ce/0NWH/tb9ccvbDdq0D0YTxUyespIHnjgAanxg/f+m+zVkJBS9evLjNjtaK7Ok+QxfVWEF3fWrFmcOHyY9LR0jqWckjhgx48fz4gRIySd+kmTJknXuqLusKHDkMll/Pzzz4i43xYtWvhqKv/z/YiQkelTX2P4wTvI0maQ1WYb92timefMJK3QQNTWiinIUrstZlBaJwLPERlIDkrhSGAykXkRtCupPqAs74GsDt9MvsEo8ckG6J082MSCn1bJ18kOjhf70yzQxkPxMoKqCAqkkIaNLWhyCUl3ee5s9nT+nRXrVpyZ6k0jhjG2bRrDu1YPeFe0+d7+I4Tti+MIKYon3N5IRJKwtf0CtNsHoZLpsYWewKErRBZziq9+nEGjRo2qvI8Fg8ucOXNQ71Uz2jCKZPkp4j1xtQp2xeTcMje/xCxgiC4Mt8PFz55TqJ0aSbykS1on8jru45lu0CiorLe8xO5Br5Bx92InBTsT0Fl6n1mrG5fk9RUg1SvCI1rOA4cXZXp3ZJb4StfkVubg8k9GU9hNEpbwqkw445diVluY+uIUSThnyZIlvPjCS3Td0wdTCyPXThnIbbfVzVV5lR/yFVax1gDvE6PrxBKR71auwlcnEwPqPbw1sHxtAt7zp3XuKVcAuvz8fOmqrr6Ub4FVq1Yz88NvmPPLN2UqPP7Y02QsddEwuXJyedFwb+RSGg5T8tVXX1XJ1L/88ot0pRofH19u/WXLlvH+22+Dy4VbLqjnvbRRyDnscmO0OwgKCMDsdEgsE6dpeAQY/uCDD1i5ciUel4c7x9zJ6NGjfS5IUKUF/sMqPTXhaUp+sdDG3JW94dtISCwi3WXj1LY4GhdcXD0tq8Nq2phCiBc8q+cUJ052Re+nRGFhwKlL9/bu1e0jKTwP0huhS2uNDRv4FyBvcQSjPANXYTiOpD5oYk+gb5xMiyAjDzTxElaJYp9IWsvc3LJSHl5BuaUs5xp9V/wavLEm5i6eLe1BITDwwoR/8e0DRknZzBfl47XBpBXIKLEqJIEHtzUEx19l+VztMgvGbvP44KO36NixY5WHFQlQ9915H7k5eTjdDm4+fgP+Sn9OyFII8wYR4GN1MwFIjTITe9T7CAhKpcjuYLe8BLVbib9Lhlfrz/Xt4YGOigrDAtYccfDeYRneDaNQeAzYQ3agbLEPj8eNXClHI5czJEFBhMbFvH1WTh4NISynYmAq5lSU8C155jTkNh1+4XoMwSoaxyTw/dz/K+MFffDBB8n+xQgdHPy0ZE61bxSq/GD+RyvWFuDNerz26RPLe2RR7825bJ9kPeCtwaP5OwHv6WkKZah/3/sQphIbv638hXXr1vmcLqsGJrmsmwp5X3ENO+mhl0hYNwIZlcce7m+4DHnLPJYsLU3eqKykpqZKYQgCBGzdupXIyEhGjhwpNVu9ejXPP/ssMqUCg1ZHr169WLN+PSK2LESlYoheyQmTne12B4UWC4OHDGH69OmsXbuWfv36SdeLghpt47otbNm+EVAwe/Z3tXqdWNl6r+TPhV3ffOJd2mV1Qe3UkdRuI3cqQ1itNJK2I5HQrIt7aHPbbaShQ0E7c8tyzZCiSedA1FFCCoLpUlT1DPVsctnW4BAuazDuAy3Re8vSC3hlbgq8J/C0ScN2sPuZsU8D36YBNv7dxEaEX/nyttMOWDFaVegUggnAi1fGGcEDEb8p/pgcFgTgDdIESnWEuKzXK74vooYXm9OGKiiAb+b9IO31l55+mK/vLUJZ+Veq2lsmxwg/7Qjm158TCczsUaa9MW4N1z7SpkpSt6cbigPk2FFjsO43M9DWHz+PH/uL97MqcT3B9mDuKL6lUu9odRZRoCjg17BlFFuKkckhuyCLsIgIAgP88dhcqFUy7mwh5/Z2FUuLH8x18fIGNyXZQZDdAE3b/ahVHtoGK3m2lwynR4b+vw72NQeMvL5Jizy1A3nefRgLzTQxDERha4ZXnoktagMOjZEsaw5ubGjUejZsXCWFTFWUSzJ44GDad2ov0dKJG6j64jsL1BbgzZxQN4A3+v16wOu73XEZ9VQXgFcsX/ASCvAmEjpenPISep2BBk0b8fnnH1cJlF1GJvxbpyLFnc34GH//QA5+VkRcUdkfz/Im45LZ2d/jO1556xW6dz8LLsqrK8IPHhzzMJmn8lDY/TA6siUpzjad2/DpVx8jss0F5ZhQ5nt3+nS8HjdhDRtJ9GniR+SladM4lpREnBx6KBR8mV+IQqOhR8+eUlyv8KbN/nYuS5ct5qZbRkpUP4KuadCgQX+rHf8pg91+++3k5eShlitwejxoFAoilAZMTjuaXd0JLrw4P2tek90EGQrpWVxWhvpc+0i8rDEHMCrM9DrZvVIg9VfkRgrkXmRHmqM3nxUjON/mFm8JxrarcRwcfOHjCDtBQJM0moYZeSjORtR5wHfKPjt9PeE0VV8cuAiyL49AvzJwezyl9F9eQfflweXx8FLJIb6bM1u6aRp7yxA+HpWHv8E3NGXnL+rZhaHsnjsIf0fUmY+soenEXJ3BVz98WO0tKW7JHhrzMEF7Amhrasle5X42hm3Bz+zHXUbfXdmfCkplT+R+SmQl0mG7e5duXD9yuHSAFb8fk5+eQNswA6/1rdw1bra4eXaVhxS3h+L8Iu6O0LHUo+OroTKKzBAXdvZA/uQCM5vyLFhtLhReBRqlFrfMi1qhQhuoIig4SApZGDdunHTgriwGV9QRB34h0CLeVVU5/Ff7ofyPNqg1wPufuhEqif5g9mX7JOs9vDV4NHUFeM+dsvCufPzxx+zesZvGDZoy66eyV/g1WN4/sqmgx7n++hHEbLmaaHv5YQfnLzwnZh8tHwhg0vNPX9Qmo2+8C/umUBrmd0L1X4W3E83+QtPGxA8/V+0l8O8HHuBoUhLBMhnxGgVdtQo+yTehVKoZ1K8fWn0YcXENGTFqeBk6oH/kw6rlRU18+FHWbdhKg2NDCfeK8CC59AeXDLWjci9WfvhhVA2OMyiv8rCFFWHrMKpN9EntQQgh5a5sYeNVeFPj0KaX7zE+v1F+49/BHY0lo4IM9tBkAuJTiQ8zcn+cjcb/Bb7P77MzyBtJYiWAtzLzv1twiNsmPc4111zDm9NfIGnLAj6+R4ncx17e47nwxpIGFP56szQlAbgLGy9EEVPC5998TmJiYmVTrfDzif+eSHpSGoZwP6KbRrN58SbuyvVNso/wkP8asISwHhEVhkTdOWokBYXF3NPMy/DmFXMu21xe5ux3sCzZQ0e1mhFNA2ik1zE3J58t2U6ybU6mdFXRM17G5PkFLM20SgeRBQsWSOFvt998L1ZjAa+888olC0KId+dnH37BfQ/eIyXZ1lURHnpxeBA3af+EUluAN+Ox2k9yLM/+MTN8z2jkq+dcD3hrYMnLAfCenr7gbX110jv4aTXM/PmzC7h+a7DMf1zTYYNGErWqL6GUqjpVpZxstYrRLwzm5ptLf3TLK6OH3It+dRuC3aWeuaOKnRh7bGX2D7PPKEhdbKzffvtN0p0XlD/jx42jSNDxhAQJ9xoHiorRqlTc99BDfDhjBgqZEo9HKV0/DxzSm6eeekry0ggvcH2pugVGjbyVnE1mOuSMqXqj/9YsCTmFs8VhhqVWflMgmuzxO0J2YDZupYe+J3ui9ZRmnueSx5pGe5Dt7IHeWT4YLm9y+X57oXEBlkNXiXSMiucfepKA+BSiAwvxCEzvlnGHIpoojaHaaz63wbfGFG56aSI9epSu/8P332LtssV8dJeRsIDKw38qGzy7CHamqfjjsB9HV3RFn1t6EChWJxEy5CiDhgzkwYdLE1JrUk7nR0ydOpWjXx1hmKwcr3k1B1gQshiz24whxsAvy3+p8HspboUG9O+Pw2Lk3kQ9d15VNqyh0OTm1fUesi0uTIX+eCxOQhvYeKtzwzOSFTaHg8l7c0Dt4Y5mLt7eL+eLr749cxAYN+5+tq/bjdftJbFNK+YtLBW2qW4Rsc9btmyRQrHqmulAiA0JwOsL9obq2sHX9WsN8D5aR4D3w3rA6+s9cln0dzkBXkHQPXbYv3C6nDw4ZUytiCRcFkavwiT2798vZW5XRFYuSNPvGDkO1ckYWmT2q/SaWQxZpMglre8K5vz0tUS4fm4RoQqffvopW+cl0XT3kDMf7Q77Bm8bh5RsVlERMdkiNvfll1+WFKX69u0rVRUynuKHWPBPitAV8QPVuXNnNm3axAtTXyD+eENSG2QRvXMIhYFpGBP2EB4dyU+/zC33x+xy5aCswuOs1SoiJlq5tj0tvRcPVylvEmZdJqb2OxmeXrmH93R7p/D6hf6O1W1FHxCKyyvHa9Nj2FV15pDTfWUGrsBu8EOR1aFKNvJGHCEi8ShTg5qgruHBSAC1JSWpaK7vXSZ+VihyzfnoOd69pVhilahqyS6AI3mQWqjC5paTVuRHRr6K3JQwnCfi0RaWSgl7ZR6MUetpM8rP58qHr732GsvmLGNs4WhJCOJSy17NfnY03MPYsWO49dZbK3U+CI9lr149kXmc/HFbCPLT8nDA1L9MnNjZhGbWdoS7YkjTH2N/0Ha6xRp5tF2pwt9HOzPYgoO3+qj5cKudEY9MPvP+nzBhAnuW5qE42RVb0BoSrw3h62++rPbSxLtoyuTnGHj1AIYOHVrngFfMR/DXn/8urvbCLqGB2PuC4iwq6mx4zSV0c6ZJbQHe9Eeqf4ivyTpOt4396CxPti/682Uf9R7eGljzcgK8YhmzZ8+madOmlcaa1mDJl1VTwVsrrrYECf65Zf7chQwdPviiyj4C9E54+EkcyXpC97VC5wyrVIntUMM/cUSdpH3nTgRG+bF21QY0ch1FllyUbhXtt41DJVNJST271Euwxh8nsXMC//d//3fRGDmhwHduDN0nMz5iy6rVqP0MPPDYI3Tt2hXh0Rh/9/04XA7cMg9Kk/Dweok61B+r0oSpcTIes43Apn588PUbPPXA41gcZrpf3ZekY0kkJDbliSee4OTJkzRv3vyyeo51ORnBzfrnp3uI2lN10Hp6vjZFMfld1zEyvfSQUtVSJCtms98OCpRa9Pv7oqymGMrpcXIar8BaEo68uIrPU1dAVJftvBhUcWxwVdcg6hXYbMx0pjBuylP0718K2AV4u2PUNTzZI51OzS4uie3xwGvLAkjL0aOUKwiWqfCXq0g1mzh6IAr/tLJ2dXmcWDqtoHnHSN6a8ZrPxXpEfP3Mt2Zyb+Fdlb4LKrLTYdVRjsQf45eVC6pjSl596QVWrlrFl/0URAWVxkFnFHv5919Ouuy9jjBPKbgS75bdAZtoFb+fQU398Xrgs1QbCXLYiwyFx0Ri76G8+OKLUv3nnnuONf93DLdFiafFcYmXvLqqZeKZPvPQZHYc2Sa1fXLiE//P3nlAR1V1bfiZPpPeE0IJIaH3Lr0XAREURAVBARV7VxS/H7vYFSsIFgREmnSkCkhvoYZOeu9tMn3+dW4MCZCQSSOoOS7X+j5zyj773rn3vfu8+9306lX+30u5HFJGZ/EBf/jwYbp2dUxtpyrXlq6D3V6hKHlJdlQb4H1iYlVv26H56n69wKF+NdGpFvBWwuu3GuCtxFb+kUMF4BWR7cp85W/evIUvP5gHeeAc05B6iaVn04uXjdC+zPKPJMb5BP5ZTfDMqU+2OQeR8J7X9AJKuYpcWwY5pmRsLmZ+XvITDRteLVt1I2eLB+lHM9/i0O7dZNgtYIX5v/wk8fHeeedd/tqxE6VahYfMg9SUVOzuMgLdG9B/ZE92bNvBsDuGSeD4j5XrUSmUWLUynHRefDf3c6kc6Jzv5jPpwfFSdKI8+qX/yBvEAaNFJP3rNxYQsLNix9jRt61jTDkBrzDrqPYkl7Q2dKcco0OUtJX4BmvJT62P2lAOwNv5MG+6Vw3gFTYl5mQxy3iZZ1564UpUUaiTzH3zGb6ZaiTHIAMbxKTLMVltdAwWoBiJ5/vq0kACDVqGOLmiURYlu53Ky+HHOJDtv/3Ktk2NT2H0OU2f/v15/a0XHLiy5e8iooYigXTMuTtxKaat7MhMQsViv/Mh7G3lfLPoa6mATHma+N2LaGxoxmGmdCigmuiNdsYtyyb06ACauBbxurd6LSXfOxsPmS859gwCY5qS3TSW4eos9mAn3q7gfzPfvHJa9PLLLxMWFibxea8ta++IjeLE7KV7/0eX2P4cqbOTPpO7ShSqmm5C4lHwx//pNK7qAryxj9cM4K33TS3grenfRrWsX1nAW1tMolouS4UmFaoXn374Bed3x+Ae0xiv1EYo7UK2qewmRXTb/oSXQkszYygRXrEkX9RhCL7I8uXLJWmy4k2Uy3R3F3JPpTdRtlNEMLp3706LFi2udCweDV66dKkkU+br63vdRMVr0O/Zs0fi3YnkFVHMQoBnu0nG/739etmb+wf1WLb0d9LTM5j68CTpyFVklJf1ghfR981fhuF3vIckw1WS7uyNXBDX+Q96J7bAG49yeeqENpxzWiO6clb+K75IYqsN5J4NRmNz7IPKrk0noPMh3vIoOAqvTDNbrezKjWWnLQt/uxFlUBBf/lyQmCnuUQGI0i4ewG5xwhk5zhqdJMeXa7FIVcZQ6hmuqU9HbclR4E9SUzi/qxWo7FhsaSjaRjBm3CipiEx1ARwBOu8YdAdtj7WkidbxRDihxLE+cBMte7fi9fdfLzfYLbwOIvk4fOtCPuztgslq57Xd0FxpYFuUD13Pj0CDRvrgjgo4i0eqJ56WQExyAxqbjjR5AjEddjIswMz6FItQbOa3jVtKpR6Uh+L022+/sfqDLXS63IfLLqeJbh7Omi1rKnP7VMlYoVIjggnl/bioksWrcJLqArwxj02qQisdn6r+tz873vkm96yN8FbC4ZUBvALsCm5mvXpVF22pxFZqh/7tAQEO5835gdizqbiZ/NFG+eOX3fzKEWeuPJXzwZvxTmtCUGZBYQIBeDPcI7hQdyMjUvtwKTSeC4mJtBwSzMcff8yaNWukSPSYMWOkI8GKJIxU1QUSldo2bdqE2Odjjz12pbhFVc1fk/OIpD8hPRcbG88LLzwnRbSeeOKJG5o0fOBo9Em5yGXOWK0G1GkNCEpvh87iWPJYZNOttEpzpYXOMWWFQmMOyo9w3smOx9ny0SEKx2eTiaHtfvKP90Aud0wKzK5JJaDzEd7yrDzgjc1I43tbNO+18sDLScub51J5+uNvriRKDRk8GKNBT4DWiTf86qL5u/xxnii4IoPzhnw6OZeuhPFVagInDRaahDbB3dNZ+lDT6W5MkaiKe2/SpEko18norSuqaHajeaMVMRxWh+HVzZsfF1SuGuOY0SPRZacws4czr+21kGI2SolmwQo9MZcDGJR1H0pZydc63hjNxQ5/8l0XH6afTBAFgokxKXn7vfeuox+I5DPx0S2SvspKPhPvqTvuuAPPy/XpkNCDw+od2Lsb+HWVY6ozVXFNSppD2CWCAqLIT3V9AFWX7dfOW22Ad9qDN2sLV61T/7tbVymqFvBW4paoDOCtxLK1Q2+CB8QDVURYP//wSzITDLhl1MNqN5HpG4mZfORKGf4XO1M3rj2ZTcJJ8DmO0ZjPgAududgklkvWSPw9lNg0KqmUqJBS8tCqybNaadujNzNmzCgR+Ip1xb9l6WJWxAWF2egiOW76K9P5ft73pVaEq8j8t8oYkcwiuN1fzf6Gt95544YRoAG3DUd3rDOelvoo7Boi/NeDVwqtwydjkOdhlelRKeTY7Qr0XsmoTDrk9gLQYUdGrnsUGs9khqb1K3P7IoKsR0+mJoe93iexnOiEh8HxsriFC6SRDO3D0B8vB1hWGHBqegRX7wze8nBMju9GGzqtz2CfNoMZjQtA6E+X0lgel02HDh2kBE5xD785YwaeR48xMrB8APvjmAi8buvKG2+8US2/gxvtS5T8/vnTn7gveewNebwiqrvCfzV5Oj1333s3Tz75ZJnXv6wOQwYOJD0rA6VSRYM6/iz4dSljRgwlxJ5ORGILeseUXuZazH3cey/5DS8yu403jx6Po4HSyDm7M6vXrL/Cdxa/DfHB7ejHgzj5umvw3YTaWuKX2IDjrXayfPVyPDzKd6JR1t4r8neRLHwr2FER24uPqS7AG/1ozQDeBnNqAW9l74lbcnwt4L0lL0uVGyVe3vPmzZOOx++/v6h6zfPPvMTJbVG4O2sYltwRLQUyU6d8TmIOjOJubzVmhQKryUxjN2fSDUZWRaTxS1QsXu7ubNq2rUxqQ1VuppBCI44zn3/6OcbcO7bGk0+qcn9irvPnz7P0t1Xs2rmHjz99mzZt2pS6xFNPPUXCX3JcTwpZr6IW6fQX5qBz6Gxu2J31yOxqdCodMrkNV5knNpkNuUyGTCbHYrXSM6Yl7iWUo73gFkm8OhGzzYRRp0CvsEpav0ajGae0RqgjyxcVvgJ4265Ff1KcLjgKOmzoWuykgW8yo50aEaysnByZsGOxMZY2rpl0q+spyWNl5ubxwOF4nJxdpRMNAUREoZZecgWPNb1xxTox3+mcbE7YbcQZ9Mj8/Pjqh/k1chIiaA2DBw2mVXgz2snblnrvHHU7Rt0HG/Dggw9elzRb0Xta/D6FvKQAcsOGFYDb24cNIzcuh9ZxPQkxF1GbSlojw5rOkVYbmNfFnfVnEthtlzGwXj5L4j3YsHmLNMRRKkMhdUr0Hzl4NE1PdCCubhSKxka+nvt1jerwin0I6cZ33pnF669Pdxi8V/S6VPe4agO8jzxU3aaXOH+DuVefdPx14CQff7eElNRMWjUL5r1XH8bH62pKn8lkpv3gh1Gpik4w+vdoz6dv3PiErrwbrI3wltdjxfrXAt5KOO9fMvSlZ1/l1P4TjEsaihIFp3PD2R1wiIkBGgY2DkT7dzKO3mJh2pEEjLlK7Hk27F42vvj+U0lqrCbaqlWr+Gr2t2zZ9keNAIvq2LMAK6tWrEXn5IKvv7sUbSyNPiJE9EeNGIVqTwf8rdeD4kuKPzE0OME084OoUSIienIHSlELestpl3NEeyeSr9eQFmdG5WdAF9EJlxtUTnPUH0lB67BbPTHHO9gZKe0AACAASURBVF6q2KyJxq3lXj6vWzr4d3T9wn6/mGI5kZuOxWgRWmE46ZzQyGSoZSbsCvhi8a8Sf33X4t94J6RkPmyWyURGfj4/5qTj4utLy+7dpepfNZ1MefLkSZ566CkeSixdxzRMfRzV3Vo++uij8rquxP6C3iYoBhrN1XkDQlklbNdRmkf1JMR0fXJihjqZS3VOYTKYyc3PxxyYTqDWQorRTFsfJW8M1vDERhvvzndMC7wk42a99QFrV62hTnIIScERqFVq/vd//7uizFElDijnJMnJyRId41YoPiGi5mq1usKnEdUFeKMenlxOr1ZN96Dvf7gyUU6unqHjX+br956VwO7XP64iMiaBz968+kQkNT2LOx+awZ7VX1WNEaXMUgt4K+HeWsBbCef9i4YuXryYdQvWYjNbSMvOIETvR4Q2ReLRTfCDRbkKjOngn9COJnmdSXGJhGHxfPLt+1LUuCaSF0Um/cqlK5n18awaWf9WuPyff/45K5asRHm5LnJvI7LMQNzz/HDLCyFTnkROu208mHynw6YmksQO/30Y9Fp0Se1RpwdhEP+0XI4stjk+WZ2vmsvYfjsKtRmbyoQlNginyDbkukXhkh10pZ/JKxqrzIImrSFyeR5JbVaSH9kWRbaDygwyC04t9tHD28wY96rRDRXGzcmLIv+0Pz52fzwtXqhsavIxkOWeSnTwKazWTDr06cex/Qd4zcsP1785vHFGAwazmYt2O0etZgxmE0+8PuOWklIUH073jbiPkGONaCIrmf6xznkDTp1d+Xlh5RN0RPKVKHUs5AKvpTLt2LGDN994Aw+znKDj/dFq1WC34GupT6ziEmdC99LPKUj6IMsig3OyDFRyBbYUMz062pjWQc0jq/Q06z9ColFVpP045yfmfj8Xe4oMg0ceSosOZ50atDL69erPG+//X0WmrfAYATC/++Z7HnvikX98dFc4oboAb+TUKRX2cWUGNpw3/8rwTTsOsmL9LuZ+9KL03wQA7jX6aQ6u/xa1ukjJJCI6gcemf8Yfiz+szNJljq0FvGW6qPQOtYC3Es77Fw4VL0oBoi6fuMS5qHPkp+SSlplFsLYj7aOL+HeR/kdp9oi7pJEpjuYE3zQw0PGqb4WuKwTKIlrp7Fy+Y+p3//cBPQfeRnBwMEt/XcYLLz//r4n0OnpriaS2L977EplKgSJZid3Fgs2mwefMUJxtHpz1/xmVxcCjuhsLuAtu7ib37cSrUlHLfXA7OvIqE7JJwNpxK65ho9DaXJEhJ7vBIQI8c2iW2hitQsN534tEy1PQqeToTTKs6QGoPdPQaiyoUZFtzSM9M5V2uS052yAJU0RjzMkhZW9VZsOp/WamuTrT1K1qSrGe1Wey2pxBt+OjS1w/U5lJWPMdWJVZyBVqJsk1uLi68lduFhEiEqZS4dc4lHfffeeGH1tCZUMcrQtFk5ud6PnKK6+QuiKF3obuJe4xPP8cYe1PsHnrprKvwQ16CMpAn5596DugL2JNUTmsuOqA+LtQYrFnJ9IgYgDJbaOw5pnpcGEQFxocoZ+Lis7a0CsrCOAr2hl9DJdDYvm/7jamLo9DG9Jd0gOvSBPvuacffRqbEdRuSkxmE/m5RuwKK++8944k5XYzm0hOzUzL4oEHa6aSWFXvtdoA75QaArzziwDvnF/WkpaRxWvFyhz3Hv00C2a/RsP6RR/gJ8Iv8dTrs2kUVIcLl+NoGlqf/z078ao+VeH3WsBbCS/WAt5KOO9fPlQcUYpM6CcefIrWJ+7C1VZUe35H8FzcQ5xYv349586do379+uUW0ReJZy+/PJ2vPv6KMxGnpeM9sV5oaKgkQVYcIJTE23vnnXd49dVXpXGFyWz/8kty3fa2bNnCmy+/g9liRKFW4ONcH5PViCHfDhlabOgx2tK4R3Y7eiwccTvG7Rn9cZYXcLULWyrpbPbfifXYEFysJas7ZGvjsLbYhzE+H6UlhDpNsxhyqd9VNIlkZTJ+Fj8SVAnE+iVSP7seATkFknNGzCCzobFr2OO/nzDTBaxnbkMnLwI7JV4/ZR7qljsZ6qFguFv5ksfEfJfMuRyxZnGPtm6BHTYrH+VdpE5iUxonlF7hLUWVyLHGO0kyZ6JVKfHV6VB7efHLr7+WepvFxMTg4+OD0H1t1KgR70x/lfTEBIaNG8e4CTcX3OzevZsPps/irsiRJVJZTjqdRjfahbc/eLtSPxvxsXrnHXfyyquvSLq511IahOrI2LFjUcoMuGTWwbOhN0KoIUufjSEjDx8nHS8597jKhlwMbLKeQOabw9v91AydG43N1Yvdew+U21bx7Fi5ciV7du5l/9r9qOurCKrXkIsRFzDqTbip3VG5K1m7Yc2/osxvuR1UBQOqC/BGTJ5aBdaVf4rgH4oq+X3+/XKsVhsvTLvnykSD732R2e88TbPQooTdS5Fx/LJ8CxPvGULdAB+++WkVO/cdZ9WP75TfgBuMqAW8lXBnLeCthPP+I0PFC+3eIRPpZ3oAdw83InYm8VezOQwZN1iK6JQlC1TcTSIaLBJaFsz/hU2rNmNTWwhp1JTL0edRKGU0CAqhfYc2UunPFStW0KVdB/oOHsiRI0ek49LCCkuCo3hw7yEmTn7gH69hWdnbaNCgQcTHxKN10qI74Y+yeT5O57uh0tpBaSM78CjIrNitcuw50NS5Hr31RVG/BEsiG3z+RJHRHPe40ssT27CSq42Bdn9hToe6Wl8GJ/evkPkZZLBA/Su2/BCc04pKWZc2mdUlAteWB/nMr3W51suymXg7LRxnmZreGjf6OQfyfW4E5oONaKNuT90eARizTKSeSr9u3kNBu4lNzMJaL51vfv6KZs2aXdWn8HRiw4YN0m9AHN1HHQrD3d+PMZMnSdrSSQkJuLi5STx3wZG8GU0UsymMsI4bMw7/4z50zG9/1dJWu5X1IZv4af3PuLqWLq1Wlr3iREhUPnv3nXd58qknpTLE1zbhl6lTp+Lr5YpO7km9hvVZsKSARiEAskFvYLq6K/7qguj9Tk7xJ0mMDFXxQEsZCmD0mhx69L79SvW1suwq/nfhj/59BtC8VTPpY2Tfnn0olArctG5kG7LJTs+BNDmP/N8Uyc5/e3NEQ728Pqg2wPvQw+U1pUr6B//4/ZV55i5cS3JqJq8/W3RK1vPOp1j8zes0qHu1Pv1V953FSuehj7B5ySf4+TianFu2+bWAt2wfldqjFvBWwnn/oaFCg3fiHQ/St+/t7Fi8jyyneJZs/rlc2d33j51IbFwkGosL/lmNyKx3jnyrGR+FlnSDnjYyFWi1ENKQmR+9z5kzZyR9ytT4RDp268qE++9n+B13SC8tocMpOINnTp3jnfffqtRL+59+GWfPns1nn32Gt7MfOoUa1/M9CTKWnNyVTSpJnVYzNnEEzjIn8sgjUhXLYZdo3E7eIblCH3AK6sUjlyvIM6dhleWhlDljsxgx55nxjBiDUZdA3eZx9I9xTOv1qheB3czWujuJTc5CIQ/BElu6ksCVcU6XUYccYrxQTihn0YlZORE42dW0VqtponDmJ0MMPcLG3jCBTwDCTU1WYzDqQW0ntFVTvpv3NdHR0RLAE8f26xdswphvxGIx4+qcSxe7Gw3kOv7wtjFnyeIaua1EIpSwUQDswhOSMQPGMPhcP6noQ2EzYGRN8AbmL5svVSysTBMnQYt+XsRTzz1VYoRU6GaPGDECpdGOzKLm+2Xf06RJE2lJ8Tvu06MXKpuct10Hst5+kkP2FHr6yXm+m4Zcs435x+xkuzXk07k/lkgLEaBbfJQL7rB4XhT/sBDR3fat26N2UiMi3iIC/8K06WRfzsDony8plJhyjSiUGpq3aSyVtv+vtMuXL0t0sKqg2lQX4L38YM0A3kY/FQHeLbsO88vyzRKFQbSklAyGTXiFAxu+RakQn2MFLSUtk+ycPEIaFpwkCdWGjkMfYdfvs/F0r/hH5bX3Yy3grcQvtBbwVsJ5N2GoiIiKSFJ5+a1VbZp4cQzsNxDjRSWa3FBodJa6TRuy8DfHhOp79uiDdZ8djxBfusWN5lSnlUzQePBp3nkeUtehvUfB0ZDFZuO73PPoFTKcZAoybXq8ghuicXLi+KHDqGRyjHIhpwXyfAVKFx1b/txQ1dv9x80nojZCO3bN0rXUP3U77paGUjERo2ciVqMKN31RJOJcq5/E0xiFWYlRbcRqsGI2K/BPmIhBmUlu0Hq80jrjbfXFbrcRo92H1SMXpbsGryPjJN9kKxLQtN7LkNg+uCndyuWvfb6HiE1RYsnXYG4QjeH0QJDieCW3fNkhnIPP09AzgBb+au5QeHMhJ50Fxgg6Kn0Z9fe9Uzg62pjHDnMqE12CWJWfgNLsgq/Nld2KKEwYUCb50DV+QJk2Zygz2OGzmWYJHdH6aohpEC5Jl9VPa4DJyUxwVGuQ2bngc5zbgrMZ4BLAqcxk5pHCug0bblpEt3AjIhFKgEs/Pz/pmSFAuWhPTHsC2x9mbrMUSdfFaGLZWmcHS1cuLddHa0lOEzJkG1du4M0P3yrRp0lJSdxxxwicc11R+CnYuqNAXqywbdu2jTdnzEQhNxPorGJ4sJLvz+aTlWOkjpcHDzw8jW7duhEUVJQIWXy8ALwC6ItqkKmpqVKZ9sJCDoLyM/PFmag8VFKxGqHJ++wjL5JlSsOeBuhk2FQW7EY7g0YOYubMmWXeF/+WDqXJuxWvhOnoXqsL8F6a9IijJlRpv5Cf516ZL09vYPB9L/LJzMfp1LYp781eRH6+kfdfe5jL0QnEJaTQq2sb/jpwgjc/+YmfZ79GgK8XX//0O3sPn2bJt1WbEFkLeCtxqWsBbyWcd5OGigd6VXyFV9bcD2d9waqly0Evw/nyWOyhB5EFJrN23eorL9e335hFRPR5BgwYwPjx46UlxZHi4H630/bAMLxV/pgwEdljFQEWG9lNAtFcimWKc9Mre7TaCjViZRhsVjboY9EDg5X+yCz5vJF9GovVgpNay6A7RzJ9+iuV3dq/Zvz333/Pz/MWoDoViqJlMs5yL/KNZjTHmlFPVqCKEOO+nxzP06gsDfBIbYlZmUeKxx6sLnk4q93JM2fie7kvgaYC7dlcMohvuQJbZj3kuc54Z3UjLXA9oZ7O9Ei7zSGps0IHGzGxvu5mTDYvzBjBbiP/fFswlJyMZtIcQdfwAlMy75Om2Nd8O72Van7Pi6O3qTEnXVNQyy2Y7dBG4USuQsYpYx4t8OU0SfRUh9Iyp0Avc5v5DDvkcYw595DDNotkvs3Ba+lyfihGeQ5udl8UQrOsWAvz30m3Rrn0d/Hnt/QImk699yqt65t9cwkgI5JIhdyVeG589913LP5hMZPi75fKTpswszR4JWaFWfLD9h3bK23ijbRxxUlMj249UGZpadw9mE6dOiH0o4s/04TKw6E9u1i6YCFtPS3sTLWjUKjZtr1s20RQQIC0a6kZAgSPGjoKnYsTW3ZslkCwiGr++eefLPlhKUarCbPNgFanIyMzHZlchgDfAjBXtIln3c6dO6Vy6k5OTqTEZuAZ4Fphua+K2lHRcRV911Qb4J34aEW3UqlxIQvmXDV+7+FTzPpyMUJ6rF2rUN6b/jAe7i78tno7m3ceZv6nL0v9v1+0jsW/b8VoMtOqaTAzX3hQ4vNWZasFvJXwZi3grYTz/oNDRQTpjz/+YO7XP2FMhHxlJjovFUOHDmbXjkNYovIxaA1o8txRhyp46+1XmfnaW2gjA+iUPEB6wV7wO0hGo3DutLvzmyKToZpABqkKEpscbSabjWWpx9lhzUMc6Xft2tXRof/6fuLl891nc/C42Ing3K6kEkdSm000PHG/VFhEANjYjiupe3TSFeAnosFmeR5qmwuXvBejNTYgJLeX5CvxgRLR8hcsZ9uga5OM7VgztG32MypxGBrZ1ZqrZTl3r/sBLmYbCFCGkuwRhf60iDpeDSBlTjEQeAaV2oDNamBi6t1XAMOSoF+oY5Pj6uLPGGNBEYOjsgQ0diWnNSloUDDc2BglchLJJqBYMY1TJLNLmUSvEyPKMvOqvyfJEzgdepw6qcF4pAfgbi5K3hQdwztv4A6thiYaNz7Pj+HjX3+6qcVYytqMAKNDBwxl6NkBuCs92NVwN3HqBCwmMyqDnaA2TZj/Q1FWelnzlfT3devWMXjw4BKj2mlpaYwePhr/E01Jqneeznd04pNPPrluGgFEl339FhaU+IS25c23368wPz82NpaJoybiHxjI4tW/SEoyAoAW8puff+wFjp09xt1j7mLXjl3ERydiyTTz8qyXGD26ZOUOR/ySkpKC2O+1fG9Hxl7bR3woVDfvuzjAFf9b+EecDoh1y1PuuLoA78UaAryh1wDeily/6hpTC3gr4dlawFsJ5/1Hh4oH4+RJj3Hq+FEMeXIUMTo8vTui0OZAcCQWq5H09EwyLprwb+xJSHJ7WmV1u+ItITsUpttH8w4pDFH546UuH2gSEwnu3ePxe5CrVHg5O0k0B3F8WduQXlg9O/fC6VgHmtt7oJflcanNYvJNVtThwfj5+RDnuw/X0yOoI79e9SDD6ySmgFiCwgtk6ATgvRS6CHNEK1zax5J/WU5nJz/aWxzg3ha7INHE8Kf/bpoemywB7fP+27H65WIMF4lvQorKhswtDa3vJZwsyQwxDMIFl6vum4P1dxOhimWoJYSOSscVG7Yaz3JElkiwrAXNL1ytJezIPSO0iI8HHMDoaUJl1uKe7odbrjex/qdpXc/AcI0v67PiyWwfwrsfznJkymrrI7jvDRs2vErfVchgLZu5DLvVSv3hQTz99NNMGDee52Tt+MJ6hEnTHr5yIlMRw0Tk9Of5PzNpyqTrSn1LdKheA5FFK+mlH8nhtltY+cey69QcBCidMG4MD0x+WJI4FFx9oXRR3iaeT/379qeud30WrlwgDb82Av3MM88Qtu0YNg8rzllutIvtw0mvfQT285EqUjraKnL8X9bcwlZBzRAR+uooz164vvCTkM0TOurFo+0V0VSvNsD7wLSy3FUtfw/95btqmbcqJq0FvJXwYi3grYTz/uND33vvPSIiIgg7egJ9aj7emrrcPqkf990/lqnjHyE32obc007j051orL0aHF00nkbR9whPu7REBhWibJjMZtabktiXl44tNgCfpmoWbZ5Xobn+bZfyuedf4MD2g3gdH4iXixMJLXfjdbANkfV2oXJWY8m1ERr/YIlH+/FNV+Gc2Bj/rFZX3HK6ySJkUS1waZOIIU5PV3kwLSxXqxaU5cO9voe4fElNk7wihYgLXVZiTFeAKgOZHFxcPQgw+dIrsXS5sHh1PDt1f9HEzZmxqrKrtdmw85v6ONGGXIaevc9hOkNp+4khmtg6ESS7J9FYp+Zx9wYk5uUy1xLP4k3ryxUZK8tnFfl7aZFB8awXus1vvPEG4eHhvPLk07xk78qy1AOc0BnYvm9nuRRXitsmgN+jUx5l+uvTadz4+qp0/fv0JzEhkbrJodha5DHmgTE89thj122vImDr2knEM0ns8ccffyzxWjz54DMcP3qMnLwcfN39uP1yAfUqUnaetJ6RLFr7i0NuF8oxGzduZsaM6dX6zImLi6Nu3YJEqKpuhRFeUc5cfCSJyK5IABTRcNEcpdJVF+C9MOH6e6SqfVDSfI0XfnszlqnQGrWAt0JuKxhUC3gr4bzaoZIHPv3wcxJS4jh88Bg/LZgnJZccPXqU56Y9R69TD6BBV6KnjjdfhYtzBhqVBnelK/epA8r1wjVZrczOPUFsnJaOlyZyJuhPjCGRbNlSOSH9f8NllaTkxtxHfqYMW76JDiceJMeexvmg9YASS7Q/wbI+JQAOC+md/yDw6DDkxbiq55v9gikqFG3zRMyXVbR2dyXE2AgfblwI4oL7RcJdztEqsRkH/E4TerSAiytajiKdxHbbCc7ypokpBDeLK2ock+6y2CysabSCIIUrY+2lg+PCtQRlI9KawlLZWXqfGIWLunJZ07FEkdf5BI86FwCRpeYU1F1b8dprBZncNdm2bt0qVX0TkbsbtdEDbudZawfkMjmzlYeYv2LpFdm/itj/4tMvkpWRyfe/XB8hFcBKANEpD0zBlipH6Qf9ew9gxrtV769pk6cRfu4MGzatJywsjF69Cqg5ooko8sjb78Qms9Hlts4c2nuI28Ju57DrPnI9k/Cu48fqLSvK3L4A5s899xxtWnVgysOTyuxfng7FZeWEvrjQEBY6xsWLeVw735JfllG/UaCkX17eJp4VGzduZMyYMdLQv/76S1pTRMEFCHakVRfgPT++ZgBvk0W1gNeR6/6P63OzAK/IIBZaldeKkv/jHFZrsMMemDxpCmmrLXQylayzKqgNecoIbHI3spVJ2NufpbFMQ77dhtliY7RLPVTFZF+uXfj31NP8cTGX29KmorRpOddsA5ZMFV5dZIx/5G4p0iSSUIR2r3iY3+iF4fCm/mEdRRTqrVc+wJyooenpoVgVZk42X4HS4kmd80Ou202S+3HU9dMJONUPmRR7L2jnVWux1jWg9srDYrYj05gx2A201LWk68WOaEoAqic9T3Pc6RLOkS3IDzmO15H+eFnqXZkzotkWWhjdaG0siiSX170Lg5Ywmvq0VgQ7NDTMGsNeWya9L5SPx1t88vPyM9jaXWCaW8FeovJzmW+MZvnWmqfUiEjre+++x7PPPVsmeJ08ZgIdEjQkqfUo2jXkjc/ed8iHpXUSz3gBnoT+cElJbNnZ2dx5551Yku3oVM5o9S5oWsDS35c4HEksy0BRBOfxcY9jybGjCpazZs0aKVopALf4EBCJbL/+9Csz35tJ586dGT1wDPVPNSPBJ5JEzyiGDx/O9OnTy1pG+ruQVKuO95nwoVDYcFTfXOxNqE94enpWqkxxcT6v4CGL9T08HNOPrTbAe//jDl2Lqu7UZPE3VT1llc1XG+GthCtvFuAtLh1TCXNrh9aAB8TDT7w0dLqSI7WlmfTaSzM4vSqKTnGOle3M1CaR7hxDnjoHU/1IntU0xktXcLRWUlukjyH5XENc45qisReVJT7S9Be0dlfsrnkYDWZ0OldMcj1KFyX/99Z0SeLov9YeffRRkk8YCd4/BJvMyLF6qzGkZtHEOAXx4ZErSyfPPUJSYbC1P4X/0dvRWV0xyXIxNIwh3fc0Ghc73ft1kRJyRCa7uCeioqKZ8+V3uF105k5ZgY6vaBdkl9ijPkCLyJJ1NHPtucS1XsbY9JFSIt21TejEaovpxhb/u7BXcIDPyM9jVVgJ9z3BIFs9OjqVDXpFpHehIgzDaT9us5U/GhblFIG5dThTdXWumLQiPxmPod0l5YFboYloXYMGDWjZskBlo7QmANu0sQ/QvGcnXn65IMu8Ktpvv/3GnG++Y9CAgfjVDZCAZZs2BbrQQj5v7Oh7MaebkNvB2eCNW2tnFi53TN7wRvYJusZXs76mw7m+yM1a9oSsQeEq57GnpjFs2DC++3IOhw8dYuIDkxh+1zAJZIuI7/i7JpChT+fJp5+U+t3oOVdRFYOq8KuYo6SKkmXxiAspCqXRE4RsnAC2wn+iiI3gDgtur0jAEzq9jrTqArzn7nvCkeWrvE/TX7+u8jmrasJawFsJT94swFvcxLJ+oJXYTu3QavCAeCmUF+wKM0TZ3wsLU2ib1q9cVu0ybaR5t0ymehfIaJX6wrbZmJd/iQupepodG4uz3J3LfgdI8z9FxzOjcZUXRCcu+R0kKi8LtbEeND9G/zt78Oprr1RZVKlcm6vBzsuXL2fBlyvxOdWKKOsZkrMiCW3SnVzP8xhJR6aRYdVbsMltOKU1RO2hwe6WS8fOzXnkiakSiCqpDRwwEPeLrnQ0tyPJloZKpuSo5zHkMUE0zSs5ui8S4eJar2VI0m14KK+OIsVaY9kXfBidXEe/yF444ySB8n3sJ0+mJ84nEavFitKmRGGXS5QYFyc7D8s7gkJGFkb8iiW7Fbc5Az1/aC5xwZxJ2xPdaCgPLpPTe9b9FDnBsZisBvycVDxcDOyGm3LY6mrhu0UFyVG3Qjtw4IDEXRXyX45yMKvSblFZ7dMZ79JC04gcmQmDPJ+xTzzA0FHDCyQK+wzG82gQXdV9kKPkst8JnIfI+fjrD64zQ0SFxcnMjZ4/giox58s5bN+6g5CcVrRP64UMOfHySE7V24vN04Rap+apZ5+SAO21TdATxElQv379pGI2IjpdWvU5EcUW0dfyKBhUlW+FbWJ9R6OuheuKUx6RBFinTtFH2rXvY/FOLtRtroi91QZ4760hwLukFvBW5D645cfUBOAVDzHxABM/sooAqVveqf8xA0tLkhG8s/hjiQyJe/Sq4/Gy3POnaQ3deuoZ51FQjUm01bmR+KHBHyeUMhknLJkcJ5O0JG+sijQ8LrShobk9p9r8TsjZjgRQxD0L999DRFI2vuaBmO168pr/is5Hw7ZrBPDLsuvf8PdTp07x/syPSE5IJt9mYNjIQTzwwANSUkzhSzwqKkqqJiaiWYIKUpYuqXgJj+g3gpSsFCkRSBQ+EL9reZIK9/T2BGS0RVFCYYmkoDBkrrGMSC8qT5xCKnsa7Gdo7ADSSOdAgyM4W51JM6ajsEE9U30a5zXEye6Es935CljdpNpCql8yOoWcHIuNnsoA+iiaSsU31Cg5T7Kk3fy76jKaM23Iq3sZuQY0qGgSH0JIXsHHlQk9fwbvwCfLB5vZijEkgWC1mh5ywYeVEahyQl2MZvNJfhTf/r602uWjynPviUprQuJr0qSq5ZaWx4bZn3xB7O/H6J3XArPNyk++O5n2wtPcfntBeeBDi8Ppk1BAK8mxZXH8th2s3rr8uiVECXHx7/3331/q8mOHjiMxIUGqeqU0uqLTqDBjIdeQhcIPZrz4Oi3aN79h4ldh5PbhiVN45KlpUlT6Vm5VkdxXuD/x/BYybhVRxCico7oA79lxT9bIZWj221c1sq4ji9ZGeB3xUil9eKBVhAAAIABJREFUagLwClNE1FAIogvif237Z3vg8plI6jT0v+7j5cMPP+T3X35n2KXyPbT0Bj0X+6zmBedgnJQFSUxn8tKZRyxysxyr3AqX/HFN7Irc4kGCywbcnLW0ShrCiaar8Ir1oZm56Lg6z5ZFWKsNKI/fJQEkc5s12FTZTHx8Qo2Cgpq86oLLKIBpVTXxESuAiYgqCl7j69P/x5aN25FboMOZkq+/UZVFYrs/GR3Xj40+O8mS6bHK9CiU8EDCPZJpVpmVHFkuWfIc6loCpMIJpbV00vHCS4oG/1ZvuRTlU8ucsMstuOCOXS8jzhKD2+lh+FBXAsMWmQl9y8PolfHYbArEObsuqhlmz2y8gy4xRluHxtqSE9y+1Mcw9e0ZUhnfW6UJmsLhw4elCGUhjaCmbNu07g9+/HQu4zI6k0Uem7zOMGL8KAYOH8x9oyfQ99QYdDiRRAxpAy/x48oiLeBCuSwhd/bC08+xaOmvV5QDiu/n0/c/5/yiWJxS3TEa9cSGHGO8tTtfq7diU9nYtHlTieOu9clbM99k5Og7+Wn+D7zy2qslRkOrEmRW5poIyTLBrxWc3epujlI4qgvwnrmnZmhCzZd+Wd2urfD8tYC3wq6rVWmohOtqh97AAytWrODTTz8l+ER3mlrLzqIvPlWcMpqEjtt4w7U1Crlc+pPNbuezvIvE7+wDNjluxdQB0pssof65vvjLGmCw6dnf+EdaXhxAPW1DbJiIt8QR3ewk2vA7yQ86gNVkQmXV0mKMnC9nz669jlXsAXEk/N3sOdxx9wimTnoK/92DcbOWXL1KVHm70HIJGkMdGlzoTZYyjvw2ZxmTUHbp3xuZHUk0YQHh9I4cgkVuxtlaoFhwyHcflzNyaJRy9dG2QZGF1SUNTZ4/2FTI+27kYY0nXn+X5y2+lgA+s3MjmfD6S/Tu3buKvVe56YTvRanf+vXrl0pBqdwKjo0WJwS7t++iVYc2rP9mKXdndsEus7FRexT3bg0JaRbKsq/WMCjyHrJVqZxuv4epT0xh2KiCCHBGchqffvm5VBlNHOHv2rWLu+++W1pcUBjefuUdEpOSqZcVQuPLHbFiYUfD1TRXujDI3p7PrGvBX+WQNrcAdbv/3EX7Lh2vUrbIzMy8Qh8QHxJCHkyAzJsBNB3zcvX3EkB2woQJZVJjqgvwho99uvo3WcIKLZbduu+FWsBbiVuipiK815p8+vTpMpMsKrHN2qE30QMiM/qDlz9CqVfSPfU+nChKKLuRGUaZAaVMiYU89vguY1ADJ0Z4Fmm9rtXHssOUCntG4mYrim4k1V1F3bhmNKAgMWaPYhm6OkZwkyFTy7HL9VjyQCnXYNPI8TgxigxLBPpWf7Ju28oqjXTeRDffkksVjwjt3r2bN2e8iae1LgZy0RtBZtNgk2ehU7iTmZWELrYO1qBE6sT1wyurEbHNtxKa6UpreUEVtYq2CFMku+sepGfsQHxtAVemyZZnsj94N+6HR5bK3c12ukRwr5NMdgq8bvljxky2WDJ56NUXbjmwW2isoDMIvmZVVPuqqP/j4+N5atqTErCNvBiJV4KCEYYO5Fry+NlrN05OzmRb9GhSPehyeSBnvI7QfHw9/u+d/5N4qoU8WfFxIdqmTZs4e/YsTzzxBIP6D0aRrKJf8hi0toKk1njZZcKC/2SarA9uuGG2W5jrtY1OvbpJmrw34jKLNT56930ee+YpSdlCJOnee8846rr78eOKRVeNvVEJ5Yr66lYeJ05iRVJbWfJk1QZ4x9QQ4F1eC3hv5fuywrbdCoBXSMk8+dhTbNr6R40kA1TYef+igeIhLx72VSHd1bd3X7iooF9myYUNSnJbjjKd8BZ/oVGpyZalYUozUM9Pzivu7bDabFzOzWQxsWSENcEz++oywqn2o9A0goDE5iTXCUemFS9JI3K7K84nhmJTGsknGbtCjodR6KYWqAKkN/oDeb1ktm7fUmYE4190qat1Kwt+/o3efbpKL8jHH3+c2P3xtE/rxvm6p0i72BBrugZbsx3YTHK8Y7tidEvH4J9AUPgAnK3exHRZS6/YVvjKKld/Pplk9jcMo9eZoahQXdmzwa5ne+hWXA8PK1EdQnTMVl8gqO8ppv6tsSv+mx34zZrKGUsu7336cYnFFarVseWYXEQiRRS0Z8+e5RhV9V3Fx49IYNu3aw9xyQlEnbrA49kFUnhr2M8l1wzMMgsqowZbpgqTexY79u4oUY5r6IDBmHJtyHVgt9jpeuwOLjUKw26U42PzJVJzmaZ6LYPc20vzW7GyxG03ddo15qPPP5Z+3+IZt3PnTgYMGCA96wpB8NiRd5Odn8uadWukymaTx07kUkIkzRs3Ze7P8//TzwbxGxbUmGnTblzxrLoA7+m7n6n6G9OBGVuu+MKBXjXTpTbCWwm/lwR4hfSJ+OFXZ1nDSphcO7QaPFDITxPRlcIqO+VdRiQ+TJr0OMbEPLA64eSioWv4cCmSVvhPaXNmKJIJa7QeW6wPPpnDMKkyUHXZTheNjoPWNLJy7ShPDsfFVHKhgyztZYyBe1FFdsHdFlpm5r2wI0t1AUuX3WzZtrlKgH55/CUqG4kCHdWh41keO6qyrwA4IgJW+NwYNfxucpOycHfyxiK3YDvcE5nBA73fUWxmA/LAFJqfvPeKCTmKFHI7HWBk7PUFMcpjZ6oyjc2+uxh++W4U13B+9wbuJCnDTr34gaVOma29THDv40wuBni/0kfj37UdM2fOLI8p//m+Ijo46d4J3HnXaPZs3sWg2Mb4UqDKYcTEV7pNGOxGcnLM6DRyuvfuwWeffSb9XdxPghcuKA1T7plCb30IexRxWLQGnOSuNDO7IbPKyNRaaar3RJzxFDab3cY8j21k6w30HtyHVs1a8MWXX+Cd54TVS4FNYUUlU6OQK8k25NKtV3eefuFZBBf9kYcexmy24KxRs+HPAm1lQWkQz8bidIb09HQpEl3R52VFbw7xnBX8e1EVrbqboKWNGDGCJk2KEohLWrO6AO+pu56t7i2WOH+rlZ/XyLqOLFoLeB3xUil9SgK84qUlQK+zs2NH0ZVYvnboLeIBcb2/+vJbdFoNk6c+VCH1jG+//ZaFn21GHVGQfW1zvYQi9IQUHrPbTDS70IVAS/MSd3whZC8X8k6hSeiIt6mI85vtfQrynHExBDkEYh11Z4ZrOIZmu8g3Gunbqw/PPP90mcd2js7tSL+S9DQdGXer9hHPjGcef4mpj02kXbuC6ycijJY0Ob7nJ6CUiZdzAR9bRN/yWqwn4GwPvCxFUklGZQ6pnbYxKqZy/N213n9QNzWUJoYiWoRPKy/0wVksPLCa+udG3dCNeU4RNOh9jMm6gipq35riGfPCk/TpUzkgfrOunTgxE4DoVuGa7ti0DZWLlq8+m40q3sy9+UUJpYetF/jT9VzByZ4ann76aak4RfEm6BGPPzCVKal9yZHn44ZTmc+CHelhRLc3cP/kiVI0/slpT4LNhqvCmTybHle1C3nmfFQK6N6jD6++NUOK5ArlIHGdFWYZOncd782ahY+PD3v27JGKUohkwEI1k/+CvKZQcNiyZQtdu3aV/FBaqy7Ae3J0zSS1t/694KPrVmy1gLcSV6WmKA2FWbiVML12aBV6QEQN7r9/giS99MjUadzWvSOhoaEOryCiMYMG3Y5l5whkxUsJy0wC+mIKWoYKGSpnV3qeH3vdCyvO/SKXvMNwOjPyhpn4Dht0g47p9njyO69FbS6I8NhzlCjcIFeejquzGx98NOuWyryvij3fjDkKf9PiXli/fj0ffzAb5dEOuBqv5uMKgomx2V9ocl0Iie57xbQ014uYgsMYmTa0wuYKhYZ19bbS5WIftPaCQin37RiFb6uCk4EnR79N3ppGN5w/U3uBJn3DmaAN4NOs8zz23lt06dKlwjbdzIEChIkEr+bNm5equ3oz7Slca+K9D6B10+Hk7ILrMTPdMgtkA8XHT7j5Muu9wiXZOS9fH5YuX3YdraFf737cllCfXi5tHTL/d8NfmNq58vOvv7Bo0SJ+mDePl6dPl6TJHn/scVydnGnfth0vzZiOu7v7lTmFbN/DUx/GWeXM8rXLpWIMYnxcVBxNm4XiJXcjNSeVtp06M27ivdJHsrjX77rrrpt+SuSQI27QScjXiap4hdKgpSkyiNM/gRNatGhR6olULeCt7NVwfHwt4HXcV9f1rCnAWwmTa4dWgwdycnJ4dtor2JUWOt/WnoiL8bz3wUyHaS0zZszgwNoorGdKLjJhCdyEn8qVbHsGNnUOvaMmXgV6BVA5FrqVzHMeeFmqT+YpWxuHuckWMm3paOTO1DkxlSynMNLr78OSICMzNxF5gAyZTE5Io2C+m/MtTZveuABGNVyOf9yU10o2DR06lKSoLALOTUQrv/6kKN16CZodos25idJe812SiW6xhfvjRpQZvbuRcyRJMu/VKA1qDC75NPALYv6GudIQfZ6exye+RPYuP9zTS/+YM5GLrv9mjIZsOo0ZwTPP1AyPsKI3wa0YTDh48CDffvI1730+i6n3TqRvUigtdQXXQIDeld6HyLKb+O7X7yUqg4hQF080mzzhQS5eusjk3N74KUumNRX6a51lHycUcUx5fCoPPTKFcSPvRpNmJUGdg5Ndi8pqI8tuxCyzMnf+99JahcUcxHPwnrvGYLJaGHvPWB566CFefPFFDuw/gJvGmTH6TnjYXTisOkeEexZdevfi1JlT5KZns3TtCkQ0WsxVHESX9zoK+oSgS5RWKKK885XWXxQBKZ6zIcoTBwQElMhZFlFeoVohIr2CpnJtUZPqArwnRj1fVdst1zxtVn1arv43s3Mt4K2Et2sBbyWc9y8bKh60gsMmXjiCW1qeh7Y4ijy+xIo8pzFYBMApOL4uaBZcOuykWdgQFHYVx3w2Y9Sm0SdpDOmqRIxmE/VoxNmWO0kOr4ObIaRaPCt0V1Mbr0buasJyJBBDu+Pk6w3IFTbc5N44nR6Jm8wHOzbO2xZiCIyhfpNAKUNc8FJrorpStTiiiicV9AyhDSqiZ4UgRWR3d7+tJ7ZTATSSjSu4C+QG8kP2obvUnQzbJeyNwuhw8SHMmInusIZ7kgZWCuyKNba77iLanINM74vdM5k2+Q/x+aUCCsO7A7Zw9OBprI3PSImMzic7oC2BE55jTyWxwRqC2nqwaPWKKvbWf3e6Z6Y+gcbdiU5dO7P58xXclV8UNRcfKr9rDpIVYCM3K4v+fQby8hvTJWcJEPr1F18Sfjqc1uGetJQXFZW51pt68pnjtZNv53wrnVCJD7ERA4YxLqUTRrWQRTtErsVKu24dOHj0AIH16pGdnIkJC57engha1ovTnsPJWcdH33wmUfum3PsgrTq2YeeeXWj0SiZYeyLWWeEexrMvPsuqVauIjYrCbLVRx+6FTAlOgR5MmDpRAoiFXFthi0goFJJxxZv4GBCAcfrfEWgBdme9P4vXZrwmyaTdKrk0Yp+iCI1I+BN7ECWIC1t1Ad7jd75QIz+Ytqs/qZF1HVm0FvA64qVS+lQE8GZkZNwy/LBKbL12aBV6YObrb7N51U6symycwx8Euwa0SSiDL6PT6Wl2dNiValv55HC68UbsKhMyoxabXY9dY8LJzRPNvpFVaNWNp8rShJOlOYKuvhrf0wWgrHhLtZ8ip82fGEx5eLkG4u6po2OX9lJ0Q7yEu3fv7nCt+Zu2qVtoIaGnuvG3TTifuRu5xoilxXZMeTJMVj0KtQKfcz0ItrclLvgvAvLN3KaoXHUrAZoW+i3DFtkAa51o1HI/Oqnu57EfepASlcuKN08QdSxD8pDBOwpTyHnIV+JzsqjSm/goimuwDlO9RDZu2nDTE5JuoctX5aaID+qXn3oRpVZFRkwKgyObSHzcwnbQdJa/3C9iV8twUaiZ+NhUzoaFM2LkCNp0bieB0aMLdtLP1EKqnudSnDr19yTJ1gwWeu5n0dJF+Pv7I8ppr/v2V+5J785u3Rl8jS5sdzvLik1rpA97AS4jIyOlpLR5c+Yyd/48KRHtzJkziBLNoo9oohqhUHmYOHEidpOV1Ix0LDYL7Vu345dfFzKk7yC87U7cl90TBXKiZKkcdr9Mii0DlcqVIfcMYerUqdd9NIv5F85fyPp1Gxg56g7uvu9uKdjw+9LfWbnodxLzEnj+hefp27dvhfIqqvoiiqiwSN4TpwjiA7e6Ae+xkS9W9RYcmq/dmo8d6lcTnWoBbyW8Xl7AKyI3oqjAqFGjrhLproQJtUP/JR4Qteit6XIU4feD6yncQlPwTQnGO7Yp8mtKy4qonk1mRYUamR1OdliFSWXBbd/om+oNsyoPhVl7nX3CiCTZEdLr78Qluj3+sm5keG2SihOoXZxQ6huAezRte7Tm09kf3FSb/0mLffHpV/yx5CiGk37YGh+hxalJ2LBgwYDT39n68cF78DHo6SG/rVJbE2B1o2oLMfYEdFZnzAoV9aKLVCBKmjyvwRny6pwg4MAYiTseKTuIus8FNm5ZVxvRr9TVKHmwAI33jbuXZ557lkWf/8CY1M5o/5aNy7TlSE+JA9qLhGnjcHN3Q6/Po33Tdrw/+wPpKP2JidMkLV+5TE6brEBOusfjk6NDbVdxp60zi/K2Ee+t56+9u6XThgcnPIj2UCYt1CGs9DxCXaMzAWZ3TnumsXLt71c+aMR77ZH7J5OTmYXdSUFWTg42sw0NStRKOb0HDOSeSeOY/NBkPCxKrEY7nnlK4vyMqGRKOuQE08N6PfVJ0DV+cNmLe6onGd7pNGgVRKv2LRk4cCAhIaWfZInI8tKlS5k/b75kR6tWraRosij/+9tvv0nFIGqypaSkSPzfage8d9QQ4F1bC3hr8v6qtrXLC3irzZBiE8fExEg/JvGlXdv+GR744buf+PaDuaRGe9GA4ajaraRl+GicLDcufynoA5F+x0j1P4lG5of2WOlyUTXhCavMhMJeuvxPtm8YqtbRrN6wpNSkFaFgcOHChRotBFATvitc88nHnyP84AUJzDQ9Oh4ZMqmsr01uIl+WS1L7HYxK6F2qLm55bD/jegb/QUGs/WsD8hO98LOXfvwt5rXarWS12o3FZMHjXFeSOi1mzoI5UtJXVTcBYgQt5mbISVW17VU5n4imiiimoE89fPckJqR2u3L6I9YREVjnvoFSxTURgRWyX4XvAvFbEv8uXfwbp86elji2CxcuJGz/UQLz3blki8Mig517dkomC17qxPETaZLiQ3JgPjKTlRZJvuz0j2DYgNt56fWXr2ztnf97iyN/7cHZ34fElCSEtJmgJGQlZnIh8iKjx45m9OjRjB93v2BpYbKY0Nl1jLC2obG9KNp5ra8WuB2iT3g/xA8g1imaix6XSHNNY/ioYTz3XNkqBOPHjycuJo5+PfvTd0gfSSJMJJoV8o6r8tpUdK7qojSEjXipoiZValz7dR9Vanx1Dq6N8FbCu2UBXkHCFw8bwd0Rxy/ixS1I/uIhVF0PbkGOv5W4S5Vw739i6LZt2/jwiXnYNHnY5ZAdoaehd1NCoksXvhfHzylul4muF4bZmIFVbsaeEETA38L0/yTH5SszMLfbwuPTp0iSSrVc3+uv3v1jJ2I55keGKhYylVjcEiDLA1096BbfkiD51bzGil7/JGUKIe8144dpZ3DPDXJ4Gn29cHJ8zqD1lbF244oqLzYgIogPT36Uju0789zLTzls17+9o1CHeWHCkwzLaoUvBR/HW7QnaDqpW5nFDor75sjew+wPOyCVHxZybMX1rb/++mtOfLOFrPoK7M4K1PFmohRpKNVKtm/ffpWLw8PDJX3sQklO8ZFy7Ngx6b9t3LhRkiwTAZmdm7fTa2BfZr//CSqLgvpmL5rl1SUAd5TXnGb96L6f/mcHoha6a3+3LLL4K3Qn9ULqM+W5yVek/MSfhU8SExOl//bVV1+x6vtV5KvzUalVPPLEI5I82LBhV5fGrun7pLoA79HhRR8kN3OPHdZ/eDOXK9datYC3XO66unNZgFf0Lp7NWd2lFf8L2oaVuFy35NDk5GTGj3yIlmEjsVvkXAzdQePLfdDhWqq9p+pvJ1MWiUvkSJxwRwBgUZzin9ry5dmYmx9G7pGHXQGLl317Q93Kf+o+K2q3+F0P7jVU4j8G5Prgm+1FhH8So9OGVKkM3SX/KIZ9PIbZA06Vy1Rx9JzQ5hdsLkbmzZtXJcocIkAgAFOh7JMATqLcb3WcXIm1BF1AALXC9crlgBroLO6JZQt+pf/wwTw8fgrtM/xpbKvHcZd4Gt3fgccee+yGVl2rDCLeTQIsNmjQ4KoPlon3jEdzUU+av51vf5rDuDH3kJyWgkImZ826tdfx8EUE2pSVj6tfQYEMoUUrgjuCtyo0jsX1E9dVnAKICLLw9759+/j+qzlYjTYGZjemtapIBeQXt8P0OdMPlbyo4l/hxtbUWUVIvxDq+dYjIChAeteKgM/vK35HrVVjNVix59oJbRPKsy8/KyXiDbt9ONNffUWiRdwqrboA75Fhr9TIFjtuuHVparWAtxK3hCOAtxLTl3voxYsXJZ5SbZSs3K6rsQHiIX3XsLEEhHXBJyu4TDtMsnzOtduC6siQfzTILWmjRgzk2RPQ9DvMH9vWlumL/1KH559/nrB9YfjIPXHGGbVNg0whwywz4Z7lTtuMlpW+Hww2E4P+HMErLTehshUlRJXl5xQiMHXfQf9BfXj11VerTFO1OCir7mIj/8RgwdatW+nWrZt0YnjvHfeQnJUCchl2mxUPF086du/EpEmTJBArmlA5EBFOEcHdvHkzrVu3LlO+a/WSlXz11Zf41PFn4ZJFCP7pI5On8thTT3DixAlJdkyhEISbgiaSssT/L6kK4t69e/nfjBmSpu9bb7wFNjt7Duy9Mnbx4sXMnTOXZzOHoJYXRHQXuh+h95m+qGTXA97L8suc8j1JrkcOCrUSY64BmUGGyqCSaBOCVuEc7MLy9cuunKgO7TOU1LRUtu/dLikm3OwmALkowCE+MApPeasN8N5eQ4B3Yy3gvdn31U1Z71YDvDdl07WLVKkHRHTpi9mz+XPVXpqcHIwy68ZAI80thoig/bgdv3HFqyo18iZOprfnYm6/ik0HN14noH8TzbjlllqwYAG//ryAyVahs2wiCwNqtMgws1B/jjujhuGidpHstigtZGuz0eZrcbI6DlzFSUHzxR1Z9sIlEo6YHfaBnhzS2i8ltE0j5s+fV+WUBocNqWDHrKwsKRJZPJGoglPV2DDxcfD+++/z5/qtdDc0wVfmxkVNHNHaTEI6tCAwMFDi9ApN3CYNQ+nRv5dU+EEA/d69e0vUA6GZXVKEW1AEvv9mDv976+rS0Df6CBGATlD6hFat0KcV8mGCPyvAnlAqGjloOBaVnf37918VoJk6fjKZF+OYbBqMAQMLNYcZenk4CnkRqC7uZPH8POZ8jHNeZ/jsp88kZYnje05IRXGen/mspAZTvImCEQ+Pf1hK/fT09uOHBXNuKvAtjHgXP/mtLsB7eGiBNN3Nbp3+mHWzl3R4vdoIr8Ouur5jLeCthPNqh17lgaioKJ564BUC93XDE78SvZNOPGfb/IHXiXuR266PePxbXJrediVTnh9z07OpS6uWdKv4deqDU2h/SU47xdVJPl+nbcc5M5RedJNM3eW/hwRZLCq5Di+bJyEpjahvLT0xqPj+5G4K2i3sxltd/0JVDrAcL9tD3TF6Fi75uUrcVVLENSIiQsqHKI/GtaPGCID24YcfShJa9erVc3TYLdVPgNaPPvqY9Lh4WuXWJ8QaiKddx27VKRRaLSqFivbZ9Um361muOoBVYcXHzZPWXdvjonMmz6Bn5syZJZ4Qvv7qa3Tr2UOS0yosf1188+KjQYBJAaxF5FSoEQkJQkEjEIUXZs2ahVCief311xGc7F9/Wsjoe8dcJ9H5yCOPcOH8BcZndiVQ5stPrgfoFd4HJ6WTBFKTlEl4Wj2kSoCCxmWwGVgZtJwJj0+QkvAcaevWreOLz7/AWedDanIco8aOlPJrhHTbzTgdFfe2WEeAX6ET/Ouvv9KmTRvatnWsEp4jexR9Dg151dGuVdqv86b3q3S+qpysFvBWwpv/FcArdBVFsl1xsexKuK12aCkemDXrA44tjiP4TAFwubbly3I42WYZbkfG35QHc01cKMEHTW+5gBfeflZKYruZTUShGjdufMvqZC9ZsoQDP65ljLHxVW4Rkdm3c/bhY/ZGrpGh1xh4StmcC6SzIfk0dXNb0tVedgU+MU+ULgbtGDeyol2I+tXxI9+EepuwNoxGHEsX1xityutX3R8kt2KVtYr47/Lly/z8889cPnIOo9HA/7N3HeBRFV307NuW3isJCYSQUEPvvaP0KlUBRREREfhFQMGCSAdBQJAmvUlHem8SIARSCBBCCum9bt/9v3kYIKSwNbtJZr6Pv8DcmTtn3u6ed+fOuRmyXNgzFvCVucAtzwFm4LFk8ZxjKKxkQqTy8+HhUx1Tp00FIa7ke55EHUl0lBAxkgZBThj69evH5smSPSbFE0hONUlrIPm4S39eAh7Dgau3BwIaB7DlpC+fv4j8rDxcvHUFeTm5OHv+XJlynEsXLMaz4/fwWJUE1wJzOPKdkGmrRMfwLkgwj0cSkvHUnaxJAo6AgavIFW1T2yFHnoPrXlex+q/VrARZYSvtzgyJhhOVi8GDhrKFcoYPH4bNm7ZBKOfj4OkDrI5w166v9aW12QN1bEh6CEn9OHr0qEEIb2CvOeq4ofc+Lc8s1PuY+hqQEl4dkNSE8BZW4dJ3dMLQuW0EHvImeufOHfZtnQiS02Y4BEYMHAPhaS9UUzQscZJnHreQKsmEQ0oPwzlhxJHlShlymx/FhcCj5X40/na5UCPCUOLU5LM+st9gDJR6w5dT9HOYgnyEIBlOsIADzFEdtuwY96XPECzlomNyu3cu55D3eXClFuBLrND3i47Ytv5jrWVQAAAgAElEQVQA7EO7QqB8mSpRVktwuIg+s+qxOZ20mQ4ChS8JhOT9+eefuPnPNaTnpsKca4EcVR6YHCUKBDJwCQk2Y8CRqiCVSaFUqiCXyaCUK6HkKOFibw+S5KJQqSBXySESi9h0BTOeEEoxAx7PElAoYGNridoBNdGjSze07NCajWAS8t2/f382+ltWm/TxJMRFP4dUpUTdBnWR+CgGHKkQbR63wzX3K8i2yIaCr8Dp06dZokiI987fdqL38/eRhjTc9ruFNVvWsKkZpLjN999/j+XLlyMiIoIl52/mGhM8njx5wp4iEYzWrFmD+fN+glKpgEKkQq/+3dh8dPK7bahcXzIviYqfPHkS7dq103uE93bPuUZ5EFud/cUo86ozKSW86qBUSh9NCG/hECSPinyA9FXykByFE9kXQzby5fDTjwsR0Kgeq61oqAiOIddQUcYmx1sbF2xFiycfFtHXfNP/O012QRlVDfaZ7ZGpTITK/gUcsotX2iIFKrjggAGvoiwf2e6BqD9QgN9+N9167MYCc9asWUi+9wgT5U3VduGkOAQ5Mje0TGlcps1hp1Owig+AY1odtp8UEmTZRSOlxl0oRAz4sc1gI3eGUF6yekiC6hGYjoE4d/FMmacPRJVk+dKVWLRkYbm/0KgNWhXpWKiEQcrekhO80NBQNrAhS8qDlZMdrN3sEBXyFCKVFD61fVCQnQ9XTze2clnPnj3Ru3tv5GTmQCizgnN1VzRr0wjf/6RbVPHtKP7QHsOgyFGAy+FDJMvHoM8HslXXCtvqFWtwZPthjEgahUfuEQhhguHTzAeZLzIxc/5MNGvWDCOGj0DD+g0x/+eiOchkDFIpjih0kDzjObO/Q1joI5iZ88CR83Dx+rlSL2Dq67SBjEPk08jlQ5ICos92u4eRCO85Snj1uY8mM5Y2hFeXDwp5ayXSOeWRZ/Q2yPn5+exx14/zf8aGP9ebzB5URke6t+4Nt9sdUZ1XsmpDnm0iSKRXIiyALFcESb4SnvETXkGh5Eohq/EYBRZPIZflQ/ikK2yU6uVwGhPPLKv7YFo+wblzJ43phsnOTTRMv/9kOkZIasAalmr5maRMx0F5MrrFdoKAU3oRkPOiy0i24KHui/eKjEvSHMJdj0HqlIRPJk/EgSmpsIFTsblJKkp8wFZM/uYzjBw5skzfjh07hh49erBkQl8v/mqBUQU66fL78jY8RHFhSN8BMJMAUgHwy8qlbMoP+Q0ipDPpfhTMrSwwatrHbFEJQzSS70t+dw4dOoShQ4eyxPzt9uuvi3Dl0DXYpdvCVmaDJ+6PoTJXQaFU4PDhw2xKhjqSoM+ePcPHoyeBKwQ4XMDHtyY2btxYZDqCLzkJIqctxDd9nHiSdBGSv6vvHN5/u39niC1555itzy94Zx9jdaARXh2Q14bwkunK+lIq64NJbrcSW3Jxw1jt/KlLaNi0nl4+6MZag6nPS44Ajyy6Cr/IrqVKTcl5Ekj4OcizTkWMYyiYdD8wGbZQ2mdB5RgOYZoXaiW3RWi9feCF9YA181IX01RbgWsk+PUjcOzcflN10ST8mjdvPoQ349BZ/lJqSp22NvcOnOK84WjlgDzko6GsHqSQFhHzP/TiCPJcHNEgtbgoP5HCe9J4D4b2HYT9i6LgLi9+uYbIo2XY34HYJwJHTh4wiI4yIRokIkdIF20lI7D9rz0YM/YDvQZFiITZjUvX8OEn47Br1y50adcZ83/+ARZcIZavW6WW7nJhNJkEa0qSLCsrnYjoA48fNxFfTPkMAweWrE5z6dIlkCI+0c9iEBMXDVmGDHbV7LD5r80gl9SGDRum1u8muVCWlpaG4UNGIi0uA6s2LWWj2YWNXAxc/OtibNqy6VWBDV2fRUOpNNzq9r2urmll3+bCz0Xsrt0OwbI/9iI1LQsN6tTEwtkT4eTwMuWqpBZ4PwLjv16E49t/hY+Xu1Y+lGZECa8OcGpDeAmhJUn3RDuxpEYiqeTfSC1zfbTCCm/kR0IfY+ozgqCP9VXWMXp06QG3q53gyZReM56sXczPRbzfXYi5+cjlpcM8uzq8oprC7L+yxEE1N4MT3QZOeC3mbmqYvbDaAcY/D7cCb5maaybnD/lRP7h4I0ZJ/dXW3V2jvIs8pRx8OZCeIyLypzDjCTAiayByeLlwkjtit/AIzKMawxvFc8djrO6hwCkYE6d8glOX7iHxvhJMljUEjDlybZ8DdlngmfHBU3BQIE/A9lPbXqU9HT1wDM3bNiuWBqVOxM3kwK/iDpHfLZIHSxQNyAW/Fi2Kp1G9DdHUKVPx8EEIG21Ny8iAGc8cw0cNxpQpU1iJMtJWrFiB6KhYrP59VYkIHz9+HCtmr4a1uzWOnTv0zl0gfiYnJ7MX5EhwiMij/TT/J1hYW7DV5Ei+bEmNRG03b97MKnWQtMNly5Zh4sSJxVRB7t27x2oak7xkfTRDEd6bXefpwz2Nx2h78adXNrl5Beg9+husXTiNJbtrtx5BdFwiVv44pcRxpVIZRk7+GanpWdj222xKeDVG34AG2hBeA7pT6tBvV9Uxhg90Ts0QOHPmDBb9byVaPfoQHLz75UcszEZM4xvwutmnyER3OUcgdouHQ8JQWHKtwVGRrN53j6eZt7r1LmhxFl/OG2VyJT91W5VhrMnxZ/CusxgiUf8Fhsg58cDDHXEMLuUCrk+aI8k7HLDLRL4iE1xzLhRZIjASdzil+sAx3xc81ev0h1jbIChdIvD1shk4fOIogv9OgMotHTylHRiZBVzi68Fe6gooeYhocAQbjyxhC+CQNufb7+Dr54OCXDGmfDWZ/Tvy0kxICUlpIBHbr76ahm3bthokKmyYXTD8qASf+/fvsxJghqgup+sK1CnUQfZ56uTpuPcgEDYWtiiQ5kGWxoWAqwLfkQeFCpDIRJBKJSwxJd95JQVlRg/7EOmXLaGolYjlG39iFQ00bUQajVxemzRpUpl5uX9u2IrUlHTMnfe/Uqcg61q/diOGjxjCPrOa/r6+jZ3BCG8XIxHeS68J75nLgfj75FVsXPryMishwB0GTUXgyfUQCIpLa67dehgqFXD26l2s+mkKJbyaPuiG7F9RCK8hMaBjGw6BsSM/AveyF9zT6qk1SWid05C9sEOd7KKyZo85t5Ff+yk4QgU4ibVgm94YvDdq06s1uAE6vbDYCaWzGG16t8bqdaZbf90AS9dqSCJjNGnoKIyXB8CeX3rp6bcHv49kZKAAz5QpyM30QvWwzuxLj5wjhZwjQ751MhJd70DOywTMAK/n3eGQ+ZJQK6FAZJ0LkHHisPSPpVg14TDsntUt0X+S7xtSfyu+W/UtunXrxvYhxO3vvYcQmxjD3nifO3fuq6NgQhyGDf4A4Tdi4NPCFSdOHtMKl8pqRLAr6fjfFNZL8ntJkYqyTg3J/q5btw77Nx8AP64euAoGNlIXOBXUhpSbj2wmGal2NyC3ygMRHfn78IFiqXIk6vree++Bd6cRYCaDV18ZNm3doJfTSl1wLCS5hRJnJFr9pgpEWWOTi4HkMl3hXRxDEd4bnYtf0tNlzeratrv846uuG3YcR3pmNuZMHfPq7zoOmortq+egRnW3IkNGxyXhq3lrsH/DDxj26Q+U8KoLeHn1K43wHjt2Gu+9163ImyR5e83NKsCQ4QON/mEtL3zoPLohQC5FDOs6DjWDO8JKXnbetgJyhDc9Bq87/YrkZr7pgZTJx2PXs1DaZQAZNcBj7GGT9Fq3UjdvNbMml5xSGm2HhT0P5y+c08y4CvYmKQBj3h+MDyS14Yx3y4QVQvQCWdgjT4JtQXVWc1SY5A6LJI9iUX5CbB81PAyFMBc1nvSATc7L4gsKlRyPAnZhdEZ/OHzthn+DH0O0s0aJO0AiyeH1d2LKj59i8ODBRfqQHM3Lly+jU6dObElVQoZItC3iYQSYoF5Q1b6Jg5e30ShvBX62yQsZIX6FEWly52TIoA/gcvN92MtLlrN8hEBk17+Crj27sBJibzdSindY11HwCv4AMm4+cjpfweGze436G0oqz5GLl97Va6Nn7846+2Iownu90w9GeZraX3k976o/D0KhUGLGpOGvfOk5YiZWL5iKOr5F7yFM+HoxJo7uizbN66P/uLmU8Bpl98qY9E3CS/KaatWqVeplgXP/XMLmPzfD0tYSn34+AfXr12cFrokUiT5ya3XBhvwYEQUIctTy9i1Y8oadnZoP1+qOukxBbbVAgOgf9+jaCz43+sCNV7bKgkQlRkjAUdR9OBSMsmwZMjmkSHAPRJrFU3BjG8FBXv6kVwIxcpruwvxF815FA7WAqMqYkMtCF/48gI9RtrzY24A8RwaO5orhcV8dIX0Z5FwleAohO4yUESPLMQrJPrfQLLYeGgc0hftHntj40xG4RhTPgySk+UHN3Zgwbzg++uijMveGfOd0bd0dTIwfLLPaQ+J7FePmdmbzJ2mrWAgQObOPP/4Y8hwVrASW2HdmDyvzNfj9Yci95gbf/KLlfd9cXax5MBJ8z7LR0es3rxdL37h79y4WfvoHnIO7QIICJHU6jQbNauKnn34q9R5MeaBHfitHDvsIK1YvYotw6NIMRXivdXwdadXFP01tO1x9HVneuPM4UtKy8N2015/r9gO+xO5138HL4/VL0JHT13HrbhgWf/cZOx0lvJqiXg793yS8pOwlqcVOEuVLaySqQXR4b1y6gX5D+oG8Kbq7u7PHfuV5dEU+rLeu3EadAD/WZ0K8ifTLxYsXMWdOcR1FUxfkL4etNtoU27b9hV3LT6BJeH+2PnxpLdEuHHHuD9AwdJTavj5zuAaRswi2TzqrbaOvjkQjOL/FcazUMidPX35UlHG+/XY2zP5NQA+ULFVX2jqiWMIrguf9lykG6rQCqxRk+oZDJswFCoSwTPBASo1AmMEc3fPb44H9I+Q9dkW1jOK5lHcdN8Gzswv2Hthd5lQ9ug6AOC0HwtBBEDC2EDnfw9Dv/PHFF1+o4yLtYyIIkCIQM6bPgL3SDX5PRkDFUeJpwE4IbYWQSqQQJDnBL2ZYid6StIboZvuxdN0iREZGsqcCb8vUhYSE4PvPlsHt317sqUSK00Nk8iLA9S/AidPHyvV3s3ARhIR/N3sepn49hb24RyrT6SIVWpkJ77mrd7Hj4Fk2hYG05NRMvD9mFm7/sx48LvfVc/Hld6sRFPIEXIZh/y4rJw/WVhb4ZdYn6NxWs5f8sj4aVKVBhy+O0lIayPEj0cwklWXI8V15N3WUFEgCPxHcJqUYia/k+Kl169ZstPntLx11xivvNVal+YgW5L7fjsP/eQ/YypxLXDq3XRr+Tb6MBo9L/nEpyeiZ7znIhAwswzsYBU5J6zP4dvHnaN++vVHmr0iTDuzcE4NkteDL16zSYaQ4FcckYlR/oF5lvugaV5Fv8xTCqHrwzSuaCx5cewc65zTCC+8kiEK84SzyLwZhsO8WfPrDOIwaVfKLF5G4WrF0A/KTMyB4NARClTWk3FwovINg4yfG0RNlE+WKtGeV3dewsDD07dMXtuaOaBLxBcw4ZiCpSqF1/4DkBWDhyIdVcmvUEJV+ySzDMwwF/o/h5GGD39euLib1RQIxwzt/Cq8HfdmLl4UtxPUQPpjTEV9++WW5w0wk0L6d9gMENipYWVhi5+6dLOnVthmK8F7t8PrymLa+aWPX8drry3L5BWL0HDkTy+dPRvNG/li4ehdEIgl+nTMRUbGJiE9MRYdWxZ8PGuHVBnkD2/z7779suUYiZfJ2I/JiRKDbGC0xMZGNHJNGkurJn7dJLLkdTdIXyMWDq1ev4vz582xKRq9evV7JsBDpFSJnRnQJSS5VzZo11U7MN8a6K/OcJKrw8+zFEDxzgUuyH3v5483WaqkLEqWxePytudowZJvFIz4gEPwXtQAVB7w0T/Dk5ffM5tW9hBkrRhbRuVTbeRPpSHL5+vbtq1OE511LIbmve35Zgw9lJZebLss+NC8Op+UKeD/sXeY05MLZ4+aH4JzugwKLFORapgF5VnDJrAnnxEbI5KQitfkZ9Enoin/cL8A2qBNclEVz8MKcz8K3hyXW71xTZC7ywjx9yre4decGpCkcWPMtIXjeD/z/cpFFnDioml7G+wP64ps504rZkhMmYwQO3rUvVfXfye8JkRLbs3sPhHJz+EeOhJn49R0D8iwxeBmpU6c95dxDfkAg3F09cej0yxee8PBw1KtXD+vXr8eF1eFwflw0LSKeGwbn0WnYtHV9uacEkud5xowZuHXzXzg7ueG3NcvZ30ZtGimMsXndNkz++jO9q9RcaV9UD1cb/7Sx6XS9qP7vzbuhWLRmN9IystG4gS8WfjsRdrZW2Hf0Is5euYvNK74pNg0lvNogb2Abkld3/Mg/2LnnL5OqGER+IMgFAhJhJnqJpJBB4otkzJ03m/3hePs2KUmpILduSXSXkF/yBvvrr78Wyad6M8qrjiSNgaGvssOTH4Cje07DJtsV1R61grnqpZ5zOjcBBb3C4HCcFKtQv5RwerVw5NomIUv4HExUM9jnqqcIoesGSFQFEDc5h/P3/tZ1qEpvT16qj+3dj4GKmvgXsRiFpqVeTHwbDHKRbFnuAwieNUH1nJL3Vs5IEdX6GNwyfeD6tBF7dKzgyJAliEeaTxQkvFx4POiBVGEMcmrfRH6INVqpRryaKt8sDanuEcj3eoyDRw6+emEm+f/kAhM5CZvxyXxwHnQHX1lcXUKiTAen8yns3L2Dzf2kzXQRIJq2QwcMR15BHswYS1hLPFErsi+4GnznlLa6bGEU8tuFQMEhT60IR47/jckTpiHjqDPcRUWf3UxOEuJbH8GWbZuMUoiE/B726NYbBeI8zJwxG4OH9FV700ggibwo/3vjNsLCIsBlOBg7fjSrTazPdrmdcSqedb5hnApv6mBHUxrUQamUPuSL/ObNm2zZws8++6xUfT8dptDa9O00BJKyQKK8ixctQad2XdDj/aKXWEgFGRLhJTnIsbGx7CU2ckxDyC3JLy68zEb+P/nAent7a+0bNdQdgU2bNuHQjhNwv9MaTrLqeFD3EFxCO8AB2hGGOItwZNYKg3lod5ipWbZWl1XkCuNh1TEMh07v1GWYKmHLCu/PWwdOgT04SdXBr/ccAj4PHA7DKiqrVBzyHyhQFMBZxUVLoQNcYQ03ojEGIBLZ2C+OAOLcYetogdxsCcwTq8ER7rCWOyG69TF4hLaAnbj4s0OidQ/rH4VzWHvYyV3wpO4R2D9qCWdUg5SXh+f1LoPrLEKH7i0xa9asIvtBTrnId8eEsZOQcLw6BOKS1R0UDW+g02AfzPn+2yqxnxV5kTOmzELUXxaItzsPvtIMDRLHaRTNfdfaRZxcJLkEQe4XiRZtW+LhuThUD3qvRO3w53ZX0OxzR/zyyy/vGtZg//7JhC8wfMQAjU6p1qxZg11bD8DZxh41A7zZ0yFyybNJkyZ69fNyWyMR3puU8Op1I01lMEJ4SVoDIYNEgJrkIr6tuGAq0VBCykk7e/I8njx7gqnTppR6FFRYXpGIgROS/PW0mVi8ZGGRiC9JcyCRYvLvhRVzTGVfqoofJA97yujpsEryQr57PBipEHVDh2q9/FD7E1A5mMMuyvA5vbK691GvtzkWLVuotb9VxfD27dv46as/ILzThV2ygiMGeEqWBJDvG/JyC6jAcHhQub1Agd0LkHJqXPM8iJg88EgfyCDPVRBj5CkKYCswh5DrBA5XAf/QHjAvIfJK5iKxtqA6B1E7ZAgEnNf3EQqQi8jGe/HDqvno0KFDmcfKw/qOR9aNWuDnlnybXVbnFj6d340t/0qbaSPw0ZjxyDxrA4+0VoABC9jk8tMgd0qBbaIvmFI0wyOtrkPYLg4nThlHv5mcpP784y9o3rwV+g98T+2N+/3333Fg9TEwQh4s3Bk0bNoAI0eORKNGxUt2qz1oCR0vtTHOi0CXW3N1cdugtjTCqwO8RECaXMJo27YtK03i61u0+hEhhYf3H0H397oVy/EhyggeHh5sCUNNG6ktbmdnx+bfqit2rekcb/Z/8uQJS+gJASaRYnt7e/afSdrErVu39FZiURcfq6otudQxtMdQdH7eCzdq3ECNewMg+C+ypw4mYl4WYKaAWZ4jIv1OQS5xhGWs/m7FluQDiRpK2v6Dzft/e5Vrro6vVbnPD98vwM2dmbCKVf9HMcPpNgpsIuGd2Ry8DHfk1nwE87jqcJJ7I7neFdhkOsEptRaEZTwvGfI0hNY/joZhY16lUUTy7iEzIBAHj+9Va/++m/0j/t2XCUFs8QgWueSkbH4Sp2/sL5fvsqr8DOm6dnLSsHrGDvhEDtBrVFdbv9KRjOTmJ7F49c9o2bKlQfPoy/Lxt1W/IyczB9//WFzhqMTvP6USJMp75/YdLF+5HGvXrmXvzpRW8lhbfC62Nk4woeu/6uGg7bp0saOEVwf0SISXXCbq2bMnmwbw9gNLLnoRBQSihPB25Pfk0TNo16kVS1w1bSSiQ/LjSN4tIZ+6SKK8a26iBUukYcg8hKATZQeSG0yb6SDQv+VAdHzaHS8cYvDYIgH+Yf3KdE4JOWKan4NSIAVHRS6XcMFRqlCgzAHzoCOsSlGC0OeK81ofx76Tf2r1/OvTj4o0Vv8eIyG60grWirKLkBSuKc/9Psy4MnjEFdfMzWESkNH4Juo+6AFzjm2pMKQpkvG0/kn4hY9EhiAaSksZzDqk4vcty9TeO/LC/MXwBeCHFpdGkzs/h0+fDPyxabXaW6FOKdfHjx/D37+4ioTak9COLAIkZ5e8VJNLzRf234LTzW7g/3dvwBQgSrB+iBzv2/Cu74vNO9cb5KWJXPAm8p2lXUIPCgrCjq17sXj5ArUvVxLd/o3rN+HXJb+wBTe6dOnCknZ9tgutftXncGqP1e32bLX7lndHSnh1QPxNWbLCCxqFw5H8NSLbQr6cW7VqZZCbpORC2vXr11GjRg3UqVNHh5W825RU/SIRZdpMD4GB3QejUWALRHo9QmKCBAFZg8p0MqrBGUjT7OCY7Q+++OUlohRVLPLrX4ZNxGAIlIbd5wyfo2gxqBaWLNG+nHBVlMojedtH/giE4L56Mm65bvdhyZPBvQTCS/Y8if8YuQHB8EytB4+EkhUgFIwMQfWOwOt+T0QjApkN7yDw/lWNiMXDhw8x/aNfIQgprhQhqX0Dn/7QDR988IFaHyyy7199NhMDPni/1IIl5LsqKioKdevWNWgwQC2HK1gngh0huWTP9uw8gNwkBcwU5uDnOMDuSWNwlXyTW5EKKjzzPY10VRg8/Kvh8JHDer1E/uzZM0wY/zFq1aqHLVvXsesngZ83g00XLlxgA0HkmdO0GUqW7HxL4xDe7oGU8Gr6DFSI/oWEl8gSkcteb0rnpKSkgOT4kKiovhupSf9mKkR5/viTAhvkS5FIxtBmfATIC9XAHoPQ4k47ZLil4rEwBn5hRcu6vullPP8hZPXSYfewYxHnyY9GjPcuKOL84KJsZrCFZXNjwO8UhFPnDms9Bynewufzq1zuOPmc9+v5ARRXO8BcXnpUthDYgmr3Yc5VwC22qJ7um8BLhbmIrX8UvqHd4KB8KWX4ZntW+xrkIgae0e2RrcrE844Hcez4YY1SsQb0/gB51xpAKCkqYyblFIBpdwFnLh0oMyBA7h8s+nk5Jnw2lo20bfh9M8ZNHGM02UetH1wTNtyzYz9iE57j3LGL4MMG/Hxr2DyrCev8oml6JrwEPOAcBK9FOi5eP18q4dXmTg353E38ZBLCbkfCyt0cn302Drt374FnNS8sXb6IvZhJlI4K77RoipGhCO+5Fos0dUUv/XvcMd3LpzTCq8MWl1Z4ggy5d9c+3AkKLLE+uA5TsqaBgYFsgjv5oJEfA0Pn8RKSS+SCSISXHG/Z2r78sSUlJUlKBvGBqjbouqva24/sMQbOF1xQ17EBLtQ+B5v7rWEjcYVYkA0z6cu9IhWQpLx8pLqHQWXBhfXjpsUmfFHrPCTRFnBStDBIjh4h1QWNz+Gz74Zg0KCyo9Dao1G5LcmP4741lyG416nMhap4UmQ53YelCqieVHZEONLsBhivDNTIqQ/HtBrg/KehquQoERZwAm73O8FCaQeSex3e9CAadvDGypUr1QKaRPHPbouA4Elxf2U2MfAZlIoNm4vq9pY08DdTvkeTFk0w8qPSX+bUcoh2KoIACcqQiO70L76B4pkjHJ80B1clABevq2BVFMjI98ujGvvRaUwA+vTpw6YIvJ1KqE46TEnrJXbjP5qMe7cfwMZeiC+nTUJaaiaCgh5g85Z1ZZ4kEDJM/pR2X8dQhPdsi8VG2bqed4qqtRjFiVImpYRXh90oifCSt0ESAbWweKmPashGiCY5uvPx8Xkn6dX2g078f7OIRkxMzCtyS9ZK0iqI1iaJuNFmHAQGdB2AdsHdYMO1QbDLPbxI4MDMkotM9wiYcW3AyPhgcqwgckiFjJMD2/C2sMv3K+Is+bFIqHEVEvPnYBgOGMYCliG9IYDuzzEZmygKyGs8g9znEbbu+v2VzJ1xEKu4s5LP3LTP5+LZESEEqSWL3StUYkiaXWaVHOzvNYGdvGhktaTVJ7vcQ6ZHELhSa7hKa0ApUEAkyIHV/ZZwgtMrk1Dnk0D9JJy/eK7YMCR69u+/D9C2bZNXBKBH9/chvdgZlkzxCnHKRtfx5U8DWXJCm3EQ6NS+M5T5HLg+7wTnnIqf8/wcIUgJOA07Bzu2KBSR2tRXI7+hZMw/N+yASJSPTVvWwcvLS61TXHIXprTiKQYjvM2NRHjvUsKrr2fOpMYpq7SwoaOumgBBLs+RFAs/Pz+DRYTJBTpCfA15gU6TNVeVviS9ZVjHD9AnfhB7iz5JkIhbNa4Bcgu43x0EKVOAOOUlcOolwSf8Y2QxKciudxYeoUPBe+t2PiGmUojY/0yzjoDYJgau8drJnCmhQJrrLsisxbC0M4ci1wqMcy7OX+UbpyIAACAASURBVDpLnxEdH05SnemPJftgEViyPqlclQd5y5vwDlSPSCYKHiKv3gPwEpuBSbeFyCYOjFUBzN1E8A0sKqifbfkCKa2u4/jZQyXu49t3GUYO+hhJ/9SAuaIo6ZZDAk7rszhz/aCOaFBzbREgijvDu46B7YvmcE437B0QbX3U1E4CEZKcgpBhHoL63X1LrIKq6Zhv9yfP+I8//sheRh84cKDOqTWGIrxnmml/R0IXjHrdK145TZfx9GlLI7w6oFlWSoMOwxrUlNxeJpfcSDrE27nA2k5MyC6JApP8urdbeeYXa+t/RbY7efIkNk3dgp45fV+Jsz+2DcVzh1TY3ev5amlvlvvMYzKRXvcozJ61gK2yGsykL2Xm3mzZvDjk1L0LJt0DFkkNwVO+1mAtC68cbjyUNukQeweCI1DC2c0Fw4YNZU8gevfu/SodpiJjbmzfDx06hPU//g3r0F4luiJX5kPW+gZq3H434Q2x2w3GSQSLqD6wVr2O5MoZCURNz8P3Tl/w3qiilWAeAlW7GBw4q17BkHPnzmHJrF3gP3ypIVzYZDaxcOr8DHsObTM2nFV2fpKeNrLHJHjd7VdiYYeKDEyk2W3IWjzAjp3bWclQU26GIrynmy41yrJ7B/3PKPOqMyklvOqgVEqfikh4C5dCiCjR8zXklwGZg+SIFR7lEN3e9NQc1Kmnv2MmHbavUphu3boVp349h66ZL8ltjGsUIuweQRDcDuai4i8grxctxwvfU1DZ5EGQ4AfnpEZFShKTnN/U2tchk8mhUohgG1v8hv3bAOZWC4WEEF0e4FvLD5s2b6wUGJvaIgiJXDx9B2zCu5fomlSZBwVLeMsud5oljEZqwzuwvtsXPE7xlKR8j2AIFGLUSHxdiOSZ1W1wOsTg6Im/1VKeITrd8yZuBD+ic1HC63cTI2e2woQJE0wN3irjz8yZMxG5QQj3/AaVcs1hlichaJKME2ePFymaZGqLNRThPdXEOIT3vfuU8JraM6YXfyoy4dULAGoOQiLJpBobuUBAkvdJdLmwkbwoEiEmKhe0aY7AggULELU5Fi3z2iJcEYa7roHwffKJRpfO4p2vQeGZBG6aBzziyI1+UrD2ZUt3u4tceS4c04qqOrzpqYSTgfzWRyEwt8Y/pw+/M59c81VSizcRIC+SPVr2AxPSDVYyx2LgZCmTwbS5gOqBg2CmfFnYRg4pUu0ewz3rpfxYmvUjZNZ+BLOHnWCuKFnxocAxEozLc/iE90KaWwSknomwr22G9dt/02iPB/Qcgfz7HhBkBkDGz4bC6gWYuiE4f/UU3VgjIkBeNuJvyOHzVP0qYUZ0V6upRfwsxLc9Al8/P0ybPsUktZkNRXj/abxMK8x0NXo/eKauQxjMnkZ4dYCWEl71wCNRXnqpTT2sNO01bdo05J4vQPPkNnhqGY6Hwlh4RvbXdBj2Bv5z5+0ws6gOj5iXBQJIFazEOsdQIM2Ec9ToIkfbhRNIlRJktN4NLl+Jq1evaDwvNdAOgVFDxiH5mA9slTWKDZCkjAW/wU0AStQJG8v++7NGB6CSCsEIpWCy7MC450H4oAP4ouLpLKQ/eR5yvK5DzksG346Ppp388MVXk7U6ESIvvBPGTEZ2ghhcCwZtutXH1KlTX1Vs1A4BaqULAsHBwZg753sU5InhHNgVjtLiz5Eu45uSbYjDbsAvE9duXFPrVKK8fTcU4T3ZaHl5L4Wdr8+DGUaZV51JKeFVB6VS+lDCqwN4RjQt68assdwikW6SU1dYtlldP/r3HwDvG7VQnwlAsiAJ9zwfwOFu2UfZJY2dp8xBRqNDcH0wFELmZbSdVW5oeATKAimYlKawyfUpgVw9hKzRNZy9fEbtylvqro32Kx0BVu5rdQJsEovLyxHCa93iEZRKOXhh/pB7PAEYoqvaHiKzdCis0mAudQI/p+SUF6VKCVHz85AW5EDJV4GxF5WoyqDp/hABf33emtd0ftr/NQLk+6Zd2w6Qy6SwzqkF/2cDKi086apkpLT4B+dunDTJwIuhCO+JAOMQ3r4PKeGtlB8mSnhNe1uJfnB8fDzat1evMpWxV6ONpnKPLj3Q9kEnuHM9EWX2BEHuQfC89zKqp0mLsN0KM1sG7nGDwHAEyFdlI6dmIDgSLnKZWJjFtIUzU7/YkPmcLMjaHMeZS6f0Wt1IE9+rYt+zZ8/i1//9CfvQ4mWkCeG1aPYAHFIViy8DN60arKNJMZHXqSplYSbj5CO/6WkoMizAccgF35yPkxcPaJTGUBX3pKKtmTxDC+cugd+9cRVSd1ddvEk6T3TT3Vi/dy18fU2vkIahCO/xhivUhUiv/fqFTNfrePocjEZ4dUCzMhLe+/fvo0mTJjqgYjqmiYmJrAybp6en6TilR0+I7unQzh+g7aNO4HF5OFPzFKwfdIGVrLjm6bumTfK+BMZBChVHAblSDpWkABJRHqQ8Baxy/WGb3L7Em9x5TA6kDf/Gmu1rWJke2soHAZLHS3JjRZebw1rpCiVTAEb5UjOZEF7bFo9hca87u59cleYa2TJ+PsS170KZYommo22waMXP5bMwOku5IjDnm3l4ukMBp+TK+9mVqiQIr7MFPYd3YeXETK0ZivAea6BecRh949E/9Gt9D6m38Sjh1QHKykh4dYCDmpYzArt27cKxJafRKb4LbrhfRXqKPdzSmuvkhRxyNoMzuuYO8BUOsHvRG0wZkmQJylBwml/HjcAbJpkfpxMYJm6cm5uL/h1GQCItAIfDwCKiF4SMHVLlYbBrlgLr+yXr9Ja0LAk/C2A4EEqKXmDLqnkFQ2Y2x6RJk0wcDeqepgiQtIa//voLfy++jeolVMLTdDxT7p/oegtew4DVq1ebnJuGIrxHjUR4B1DCa3LPmF4cepvwkh8gokZAG0WgPBAY2ncY/K83AEcB3KoZiOpho/Qybaz3KXAFQtg8Lbt8rZKRI6/lSSxd+z0aN26sl7npIJoh8PDhQ0yfMAuqRD8w7qlQcqWAhAPrR13Al6v3XZTmchFyxxcQCiwgjG4Di2wP1on8Onfh0kiKbbvXa+YU7V1hECCnRBOGT4TiTEPYiNwrjN+aOprIC4X3xyL8tl5/x/zk9z4iIgItWrTQ1J0i/Q1FeI/UX6WTX9oaDwybpq2pwe1ohFcHiN8kvKSc8NOnTxEQEKDDiNSUIqA+AiNHjoTj2WpQmEsRLktEzbRB6huX0jOm2mFAqIL98/6litET9QYuuBC3OovZSyZVmBxpncEx0QE+HP0xEk5bwTarKbtn5LIhA0YtbzNd7kFmFw7XJ6OQ7HwUPK497JM6I9/3DjzayrBp6x9qjUM7VVwEbt68icWfbUO1sKLFQSruiop7Hut/GjPWfoSuXbvqdVlvVxbUZnBDEd7D9X7Txh2dbQaFf6XzGIYagBJeHZClKQ06gEdNdUKAHEcO7jYE9R40RpxDNOJkWajxQrsywIWOZLqFo8DlIVQKAThPm8JK6lGMOBG5qsyGOyGTitGoYxOs+2ONTuugxrojQKJMX476CXYPNNdTzeGmQtrgFHgcc6DAFdYR7SAV5MCs610cPLVdd+foCCaPACkOsmDiH/AKf3dxGZNfTAkOylRSpHU5h7/P/WWSFy8NRXgP1TVO+sbgR1NN9jGhhFeHraGEVwfwqKlOCJBSzh8P+BjNg9rjZM1jqB48Vu2oXmkTR9ffA+cnTVBd2gAPG2+CkiMAP7wrrKSv5auyLZ4CrW5BJVfhwuULOq2BGusPgf9NnYPgPSrYZdTTeNA8JhVy8wzY5fuDVNjLafIPth5ZAQ+Pl6kNtFV+BAb3HAPrq21hUUKZcV1WX3gaJGPE4CvNdBlKa9scbgpEnW/h0Lm9Wo9hSENDEd6/6xiH8A6JoITXkM+L0camhNdo0Ff5iUmEd0jXYaj22BOP7KLh9WS4TpjIGSnSGpxEjYfvwUJlBRlPhHwmA3F+N6FItYJ1SkfkKOMhb3MOPAEPZ86eflUyWqeJqbFeECCqDQN7fAjJxRaw5pRcTOJdExWo8lFQ9xgOXNkOJyend3Wn/16JECASZRu+PQiXYO3SGhSQgwseW6xGYpOEAvc4yO0zIFGKwWUY8AR8WDyuA6VMAfMMNwjxsgJgebRY82D4fCTDmnWl5++SfNzo6Gg0bPiyEmF5NkMR3oP+xjl9G/r4y/KET6O5aIRXI7iKdqaEVwfwqKnOCIzuMxoe130Q5HkPNuF9YMPYaT1mujIByoBg+IX0K5a7G+l2DXlmz8DN9Ye8wQOcP3/eJI8GtV58JTH8ZOJExB11hE16cb3kdy0xn58BWatrOHZ6B8zNzd/Vnf57JUMgKCgIsz6fjZp3R2skY6eAFDkuzyGq8RwSVR74Qh5cqjuiY89WGDBgAFuMpjDPdeaXs5GWlYrQoFDwUx3QOK2oXng25wV4SmtYckouda0N5PnCVCQ0OoW//t5ksicWBiO8fr9rA5nONkOfTNF5DEMNQAmvDshSwqsDeNS0CAIkYsswDMitaR6P9050SLnWIb2GoNfjAQh2v4u4RBFqZmteUrhwogReOLh1I+H3cEAxEXoZI0JEwAmoGDnW71mK2rVrv9M/2qF8EUhLS8OQniPg9EDT1BYV0tzuwqZeGg6f2ck+g7RVPQR27tyJLSv/Qu3749ROjcpyfo4031to0rohFi1dAJJmZWVl9U55wszMTAzuNxic+37wF3VmwSbV/R7V2wZxnADN8sboZQMknCzEND2KT6aPw8iRI/QypiEGMRThPVDbOIR32FNKeA3xnBh9TEp4jb4FlcKBrKwsxETEoFHrRjh27BjatGkDZ+eSy74WLvjx48eYPX42ujx9D1HKSAS7hsL7sfayZPH1DsMqviZqZhXX8c2ySEBcwwtYvnYJAppqniNaKTapAixi7OjxSLptBtvnbV5F6Ylig1iQBoVlKhiuEJAxgMQMUocEwCEdfGsluvRthv99a7rVkSoA9BXaRVLyedLYL+Ee2Q2WadVerYU8O0T1I8suEiLrLChs86HMYaAs4EPFVUBVNwFnLh7Sau3kouWUz6fA4+pQcCFETMPD4Dox4N2pBe9c3bTEiUPE94g6m9GqX3MsXrxYKx/Ly8hQhHe/79ryWkKReYZHfmGUedWZlEZ41UGplD6U8OoAHjUtgkBhZFfdCO+kSZ/D4rAd/JT+uG13Cy+QAY+ogVqjGutyHhy3ZAhl9rB+4Qf7fFcoODLIGRle1LqJwZN64vMvP9V6fGpoeAQ2bNiALZt2wlrsBiY6AKo6YWwFPqG1At51XCEXg43ApaWkwMvPA2PGjEHNmjVpVNfwW2PSM8TGxuKzcV/BNqohrGNrgwcee3kx2TkMGc6BqNe6Hmr5e7EVK8PDw9kIro2NDaZMmQKhUKjV2kgFzBUrVuDwpmMwtzVD534dcfnYVagggP893SO8cbwo5Le9jH9OHTNKik5cXBwmTJiAJUuWvLNyqaEI775a67TaG12NPng2WdchDGZPCa8O0FLCqwN41FRrBMgFpe6teqBH1PvgcQQ4V/sMbG/3hwVelpbVppGISFrdmzBzz4aTpx2SYjNAKlooVEq8P6QrJk823S8xbdZbWW3IcfGmP7bi4cNQTJ46EV5eXiabu1hZ96Cirmvhj7/i0rVr4OfbQapIg2M1D4z5eDD69u37zjQFbdZM0rIGDx4Cks4FFQNljhywBCRhVqiX1R8ClZU2w7I2j2rshHcHJ7aSnDEaWVOHDl0gz5PB0sEcJ/85USrxNhTh3etjHMI7Isp0fyso4dXh00AJrw7gUVOtEVi5ciVCN0WgRUobZCjScanWRbgGDWcjM7o0ctM6KeAEFm78Bs2bN2d/5Apzi3UZl9pSBCgCFQMBEnkll8xIykGzZs3Kxen4+Hh8Ou4rFMgzwFEwEMsLIMi1RN2wCVrNn8qJRUGn2zhx/qBRTy/27duHdcvXIV+kQu8BHTF9+nQ4ODgUW5OhCO8eH+NUSBwZ9blW+1YeRpTw6oAyJbw6gEdNtUJAKpWiR+ee6BzaEy4CV5ypdgLpSUrUSh+q9mWTsiaW1XuOXNeHOHJ2r1F/LLQCR49GlOjrEUw6FEWgDAQIyd68eTOsra3RoUMHODo6on///nD4twsc8mtqjN1zfhDqTpaDBAaM3a5cuYJZs2YhL0cEZ1cHnDx5EhYWRU/iDEV4d9c0TpXEUc8nFYH92u0QLPtjL1LTstCgTk0snD0RTg7FlTj+uXAba7YcQkZWDur5eePHmePh5eGq1y2khFcHOCnh1QE8aqoxAiSVoV/PfkACD31SBiBeHIcb3tfg/WicxmOVZiDniiHqdAX7Tm1RSy1CbxOb2EDXrwWitp83XF31+4VrYsuk7lAETBKBMR+Mg+RQPTgpqmvs31P/g5i5ciJ69zaNynHdu/dAfk4e5HlydOvfDYsWLWJPzsjF47p168JQhHdXDeMQ3tHRrwlvbl4Beo/+BmsXTmPJ7tqtRxAdl4iVPxZVcoiOS8KoL37GtlWzUcu7Glb+eQARkbHYtOx/Gu9/WQaU8OoAJyW8OoBHTTVGgCW83Qaia0gPWMAKSUw8Aj0fwim4r16iu2xKQ6OjOHTlLzbaUpUbiTqRxuVyqzIMdO3/IVBQUACiZmCMwgRVcROIxFmfdiPgmBAAu/Ra4KkEYPDys5hgFQqJVQ68UpqC+1/1tkyfB5Dap0EikUPhnIWd+zaZTPEUUtRj0fdLIQ9sDTT7F86eTsjLlUGWl4NfVv2IyMhIBAQEoFGjRnrd6p3eG/Q6nrqDjYn57FXXM5cD8ffJq9i4dCb7d4QAdxg0FYEn10Mg4L/qF5+UhqiYRHRo9bLwx4PwZ5jxw1qc3196sRB1/XmzHyW82qD2nw0lvDqAR001RoDIl40fMR51bzWCl6AGCEE97n0EvPtd4QT1I5HZFrEwlziCwyght8yFwiwPMtt0iG2S8MuquWjeuonGvlEDikBlRoDktebl5ZkMiarMWBeujVQ/m/7VLMRGJcJMbgm8cAAv1x45jW+CvIAgnYFNXn0Iq4vh394Toz4cxr6gkqipKb2ozp49G7cO3YXFsxHsPQuR/TMosoVA85v4++ROnDhxwiCEd4fXRqM8JmNjX6v5bNhxHOmZ2Zgz9bXyRsdBU7F99RzUqO5Won95+SL8umYXLMyFmPtV0eIkui6IEl4dEKSEVwfwqKlWCBCZm/DtT9A6uT3uVbuNqPxUVH8+SO2x4lWRkLS4ADMLJ1jyLGFpI4SXvwsrnTNw4EDw+a/futUelHakCFRyBIhcIMmffzv/spIv2ySWR05biKIDUVyIehqDVWuWIzg4GNu37MaD0CB89/1cdOvWzSR8fduJP9dvxr4tx8AL7gWBypL9Z1mNCEjs76JxhwCsWLHcYCkN26sbh/B+GPea8K768yAUCiVmTBr+CpqeI2Zi9YKpqOPrVWzPlq7fi237TqNpQz/8/stXsLV5iZm+GiW8OiBJCa8O4FFTjRGQyWR4r9t7aBDZGL6yOjjucRiWj3rDRl785m9pg0tUIiS12IsTF4/C0lK/XyYaL6gCGdBLbBVos6irlRaBb76ew65tycqF7H8X6pbP+/YHODk7YeoM06ryRYj5/6b+AH52dfDCXhbUELU9glnzvkDXrl3Zi8GGyuH9y/NPozwHH72Y+GrejTuPIyUtC99Nex2pbT/gS+xe912pF9JEYin2Hb2Io2eu49Dmn/UqiUcJrw6PBCW8OoBHTTVGIDo6Gl8M+RJ9YgchXZWGKzXPwzPoo3eOk+x9HTZJddk0hlhlCEQtr2LXnp3w8fF5py3tAJAI04ULF9CzZ08KB0WAImBEBEhBh6tXr2Lrlq34bNJnGDZsGO7du8cqMpACGpcvXzYJdZmN67di/9+7sG3bNjx69Ah7du9F9N8O4FgXoN5AHtas/e0VioYivNs8Nhllp8bFf/Jq3nNX72LHwbNsCgNpyamZeH/MLNz+Zz14b9yPIBfUsnLy0Pq/Sp5yhQKNu3+Cy3+vKlHRQduFUcKrLXIksfrBA/bPhx9+qMMo1JQioB4Cu3btwoGFB9E4rQVeyGMR4/ICHk9GlmmcYfsYoqaB4CnMwUiE4JtxMGRsf4wdX7adeh7RXhQBigBFoHwRmDNnDm7tDoW5nQNkVqlQiLhgEm3BqZOGsxf+0WtEUJuVkWp0X3w4A8p8FaJzI+Do7ABbviO4ifXg0CgP+09sLjKsoQjv1mrGIbzjE14T3vwCMXqOnInl8yejeSN/LFy9CyKRBL/OmYio2ETEJ6aiQ6sAEOmyeUs346/f5sDLwwVHTl/Hig37ceXQb3rdT0p4tXmi/7OhhFcH8KipxgiQL/rrV6+D4THgZnPBqCzgETKizHGyeXHIb38DA4e8Bz8/PzbXjRSUoI0iQBGgCFREBEgaQ9/2I1H9Tl/IOFIIlRaIUj1CQZvLuHzlklHvIZDUpx7d+4EJagdegQNkyIGq9Tm069wWEaFR2Hvwr2IRaIMRXveixLq89np84sdFprp5NxSL1uxGWkY2GjfwxcJvJ8LO1opNWzh75S42r/iG7b9l7z/YffgCyKU1T3dnfDtlFEuS9dko4dUBTUp4dQCPmmqMwKAugxCXFAeBnRBCiQDKZ66omdevzHGUHAUSOuyHQpoPAd8Opy7+bRJHfhovnhpQBCgCFIH/EOjaqQdkTzlokDQe+UwmntXYD5WzHDdvXTcaRiT16aOxE5By1wlmUQFQQYmCJicxf/lUdOzYsVS/DEV4t7hvMQoWExK1q5BXHs5SwqsDyiURXvLQk3r2Tk5OOoxMTSkCRRFIT0/HoIGDIM2XQmguhH2iK9LNklDr8WvNw5IwkynFSGxxENV93TB91jS9az3SfaIIUAQoAuWNAJEl69muL2RPueDUEkHOSPHV9C8xdqx+ZazUXdepU6ewbOkKMFEBMH8RAKlKBEnjw/h+4Vx07VU62SXjG4rwbnYzDuH9OIkSXnWfmwrVryTCy+YX3foXly5drFBroc6aNgLXrl3DvHnzIJfJoRKp0DayC+7434DH/dHg/Se+XtIKYpxOo9lYVyxbtsy0F0i9owhQBCgCGiBALqvNmjkL7tU8sGr1CrYkcXm331asxemT1yFNMQfzuCHMlQ4QWURDUf8+JJx0/LLwZ3Tu3LlMtwxFeDe5bi1vONj5Pkkeb5R51ZmURnjVQamUPiURXlIhZu+ug/howugqXZpVB1ip6VsIkGjGkgVL8M/5f1gZHgEjgHOqO/KdsqHKtof388HFMFNBhRxuHOL9zuOTqR/g009fayNSgCkCFAGKAEVAewSIJvN7vd6HPNEGgtg2MJe6sIPlcCPBtPoXazeshru7O+zs7N45iaEI70YX4xDeT1Mo4X3nplfEDjSHtyLuWsXzmZDcJT8twfGzx1nxeyu+FXpF98NFj9NQhTdGdVnRymhySJHc+DQ4tgVwcXbE9j1baN5uxdt26jFFgCJgogi0atUKjMQcluE9YaH0YL0kQYaCOqcw5ecRGDRI/WJAhiK8G4xEeD+jhNdEn1od3aKEV0cAqblaCEgkErRp04a9fcxwGFilW6Ff5hAc9TkA13tjIIDg1TjkSzeh7klMmNsfw4cPN6kSm2otlnaqUAioVCq9qH4EBQWhVq1asLW1Ze9A2NvbVygcqLNVB4H169dj9+494EfUADe7McyVjlBCAbHzfXAaROLMmZMaBRgMRXj/cN5mlE2ZlDrOKPOqMylNaVAHpVL6UMKrA3jUVC0EiMxNz649kZOZAyGH6Ojy0S9yGJQyJY77HoFn8Bi2PvubLafFdbgF8DBy7HB06NBBrXloJ4qANgis+W09Jn42HmZmZtqYv7LJzs6GjY0Ne4Jx9uxZ9OtXtvqITpNRY4qAjgjMnz8ft2/eQ05ONiDhgasyR/tezfDzwvkapzIaivCudzIO4f08jRJeHR8v0zSnhNc096WyeUUiCqSC0IvnL2CRYo2B+cNw1/E2YjnRqP6kpEprKohrhSHNLAw+Tb2wcdvvlQ0Suh4TQICUut6zYz/Gjh+llyivCSyJukARUBuBD4aNQEZmOhb8sgCenp7w8HiZ2qBpMxThXWckwjuZEl5NH4GK0Z8S3oqxTxXdywkfTUBIWCiEQgE44MAl1hU5HvlwvTMcvDfSGd5cJ9HfjWmwFQFtArBm/esylhUdC+o/RUAfCOgrFUMfvtAxKhYC5EWPVFOrXbs2zM3NdX7ZMxTh/d3ROBHeKek0wluxnmg1vaWEV02gaDedEGjcuDF71EuOfK0zreEvboAIxxi4POhXJH+3cJJci0Rk+99A0w7+WLD4JwgEr3N8dXKEGlMEKgECKSkpGDlyJJsvPGHCBPTt27cSrIouoTwRIBeJebyiqWTazm8owrvG8S9tXdLJ7sv0kk4ddRpSb8Y0h1cHKCnh1QE8aqo2Aq1atoJCqYBUJAVPzIOdgz28goqLe8uYfEjkSqS1OYgtOzfCx8dH7TloR4pAVUHg0KFDWLZsFUiFbT6fh9mzZ6FXr15VZfl0nSaEQEZGBk6ePImAgAC9FwVa7WAcwjs1gxJeE3rE9OcKJbz6w5KOVDoC7du1R25uLngcHgQcASwjWsJN0Rg8ZdHIbXS9bVBxgU49O+OnJXMppBQBikAJCCQnJ2P8+C8gleXCwd4J+/fvojhRBNRGgFwkZhhG7f6ldczJycHDoHA8j3tqEML7m71xCO9XmZTw6vxwmOIAlPCa4q5UPp969uyF9LQ0NldMoBTAXuACJYeB/Z0+EODl7fgMJgmi9pcwfuIojBo1Si0QRCLRyzEFAsTFxcHb21stO9qJIkARoAhURQQK02G2b9+u9SW1t3EzVErDKvvtRtmiaZkfGmVedSalKQ3qoFRKH0p4dQCPmqqNAHnOPp34KURiEQQ8ASzllmCEDNyDPnyVwxvvfQoql2Sc//ecWuMS3dPpX8+ARCJm9X2VYg4YMxX2oNrRdwAAIABJREFU7tuLatWqqTUG7UQRoAhQBKoaAnv27GFzwPXVDEV4V9gZh/BOz6KEV1/PhkmNQwmvSW1HpXWGHMGSMpYSmZiNxioVSlioLOFg5wxrrjWUUCJTkgo5RwUfPx9s3rbxnVhMmTIFN27cglIsB1fIg0rOga2TNc6fP6e3yxjvdIJ2oAhQBCgCFRwBclKmUChgZWWl1UoMRXiXG4nwzqCEV6vnwOSNKOE1+S2qNA4SofNzp89BppCxX64W5hYw55pDkQNI+AUwhzmUAiW45lycu6BelHfFihVo164dtmzYgslfTdb7pYlKAz5dSJVB4Pnz50hISGA/F7RRBNRB4PKF60hJSsbw0UPU6V6sj6EI7zJb40R4Z2bTCK9WD4KpG1HCa+o7VHn8IyS3e9fuEElEUClUkMqksLOwA6SAiquCk40LXOJcEOEWgQ/HjcG4caarhfjmrhA9VLI2fUn8VJ4dpysxBgJ37tzBrp0HsGz5QvpMGmMDquCchiK8S212GAXN/+WMNcq86kxKc3jVQamUPpTw6gAeNdUYAUIM+/fvj8z0TIilYvamsJnADAqVAlYCK3imeSNFwQGsxbDzFmDU+MHs7V93d3dwuVwQcqmP28UaO16GQXx8PEvOia6lk5MTyGUQIuZemRsRrs/Pz4ednV1lXiZdG0WgwiCgL+UFbRZsKMK7xEiE9xtKeLV5DEzfhhJe09+jyuYhKUBBviA3b9kCqUQChVwBuULOElmS5mDGmEOosoOiQAy5UAXwxbBysEJejhi79vxlchfSCAknUbW/tu3CvaB7aNG8Bdb8vrKybVuR9cTGxoLk/fn7+1fqddLFUQQqCgK7du2Cn58fWrRoUe4uG4rwLrY2ToR3Vi6N8Jb7Q1QeE1LCWx4o0zlKQyA4OBhff/01Gx2FChCLxeAxPIALmJtZgMtj0Kp1G3zy8QSQCIapF6LIzs5mI59UJYI+8xQBikBVQcBQhPdXq51GgXB23hijzKvOpDSlQR2USulDCa8O4FFTvSFAUh0KCgpw69YthISE4MSJE2zqw1dffWVyKQx6WzTApmiEh0XCv05Nmm+pT2DpWBQBikC5IWAowrvQSIR3DiW85fbslOtElPCWK9x0MopAEQSSkpLYiHBmZiaaN29O0aEIUAQoAhUOAUMR3l8sjRPhnZtPI7wV7iFUx2FKeNVBifahCBgOARLlJTJS5L89PT0NNxEdmSJAEaAIGAABQxHeBUYivN9RwmuAp8QEhqSE1wQ2gbpQ5RHIysrCqVOn9Fr9qMqDSgGgCFAEygUBQxHeny12lYv/b0/yfcFoo8yrzqQ0h1cdlErpQwmvDuBRU4qAHhAgkd3Ll66jQJSDPn366GFEOgRFgCJAESg/BAxFeH80Nw7hnS+ihLf8np5ynIkS3nIEm05FESgBgcOHD6NWrVqs3jBtFAGKAEWgoiFgKML7g5EI7w+U8Fa0R1A9fynhVQ8n2qtqIXDhwgVWWszDwwM2NjZVa/F0tRQBigBFQAMEDEV455vt1sAL/XX9UTxKf4PpeSSa0qADoJTw6gAeNTV5BHbu3AmBQIBmzZqxUVR1GqkiNnvW95DKC2BjY4cFC35Sx4z2oQhQBCgCVRIBQxHeeULjEN6fJJTwVsoHmRLeSrmtVXJRROkgMjISTZo0gbW1NYvBimWr4ehsCw5HiLFjPwCHw9EIG6IPTEoa00YRoAhQBCgCJSNgKML7vZEI78+U8FbOR50S3sq5r5V9VaTq2osXL3D58mVEREQgNSkDcQkxsLCwwOTJn6N79+6VHQK6PooARYAiYBIIGIrwficwToR3gbRohPfa7RAs+2MvUtOy0KBOTSycPRFODrbFsL944z5WbNiP1PQs1PH1wo8zx6NGdTe97hFNadABTkp4dQCPmhoFAZJfe+9uMDIzM3A/KAhmFkJ06dIFrVu3RmJiIluC+EnEM4Q9CkGHDu0xceJEjSO7RlkYnZQiQBGgCFRABAxFeOcI9hgFjYXSka/mzc0rQO/R32Dtwmks2V279Qii4xKx8scpRXxLSs3AgHFzsX7RdDSu74s1Ww4hOOwptq78Vq9roIRXBzgp4dUBPGpqFATIM7tv3z60atUKhw4dQbVqboiNSUByYjYUyGYLOAj4FpDJRaju4Ys1a5fB1rb427hRnKeTUgQoAhSBSoaAoQjvbL5xCO+vsteE98zlQPx98io2Lp3J7hohwB0GTUXgyfUQCPivdpIQ3gdhkejVuSX7d4+exmDy7JW4dHCVXnebEl4d4KSEVwfwqGm5IkDku7Zt3o6s3ExIJTIIzfjgyDmQFVhBATnMbMVQyFVQKGXwq90Aa9etZFMcaKMIUAQoAhQBwyFgKML7Lc84hHeR/DXh3bDjONIzszFn6utywx0HTcX21XPKTFfYvOcfhD+JxvL5k/UKPCW8OsBJCa8O4FHTckFALBaDx+Nh8IBhSM1IAZdhoJABQq4ZPKr5oUWH2khOTEOnLu3h4ODAViz7+OOPaZnectkdOglFQHMEgoOD0ahRI5BLoVu2bGErDBZeNNV8NONZkAqJZmZm7J+q3AxFeGcZifAufoPwrvrzIBQKJWZMGv5qi3uOmInVC6ayebolteuBIfhpxV/YvmYO3Jwd9PpoUMKrA5yU8OoAHjU1KAK5ubn4ZvpcvEiKhlLOIC8/B5IkT0jjasCxbSAaN22Ijh07olOnTiB5vYMGDTKoP3RwioA6CMjlcty6dQvR0dGIiYlBdnY2+8JmZWUFf39/tsCIn5+fOkOZVB8i18fnvz7CLXTu3r17ePjgEcZPeB0BI/9GyOyTJ09Qt27dIuuY/c13uHc3CENHDERmZiauXr0ORzsndO7WAQMGDIC9vT0Yhil17WQ+osaSlpaGuJgUuLrboW/fvqhdu7ZB8CIpUmQPiR63RCJhfYuNjWXn+2PDRly/dg2//bYKjo6OBplfl0HJfYaysNRl7DdtDUV4v+Hu1ZeLGo2zRDHiVf+NO48jJS0L300b++rv2g/4ErvXfQcvD9di4544fwvr/zqK9Yu+LvHfNXKkhM6U8OqAICW8OoBHTQ2CwKNHj5CcnIylS5dBoZBDUqAAJK4Q5alg7pIGpYQPRiADB0pYWlvh0KH9Jf4QG8Q5OihF4C0Erl+/jqZNm0IkEuHrL75DakI+pPlCSLMtoJILoJJzwOErILCRgXGIgRIy9O3XA9Onf22yWJJTFXJS0rlzZzx79oyNxn7xxRTMmvUNG4nNy8sD6UMIPfljaWkJJycn9g/p7+bmhru37+Pq9Sto2ao5bC2dcDf4X3z44VisX/cH0tOzoMxygjLXBTKRAHYecoCRgGeTDSsrC1T3rgYXF2fUqlON1c8mBWDi4uLw++9rERMCiFNtASUXinwLmLlkw7JmDNzdPDFwcC822kqkCclpz5uNvIiQS62EZF+8eJElr4TEe3p64vGjGDyOeAoeT4kBg/vA29sbLi4uuHnzJg7tPQ8ohKwuN4ejAkclhCgH4FqmwcrGEiq5HRTSAtSuVw0WVnaoWdMdLu6OEAqFLHknxJ/8bzIe+d/kOSE4EQJNNMIN2e7fv4/wkCfo1rMTuyeGaoYivDONRHiXvUF4z129ix0Hz7IpDKQlp2bi/TGzcPuf9eC9JVl58XoQVm8+hE3L/1eiioM+8KeEVwcUKeHVATxqqncELl+8jh/nLYJYng6+QAiO2AbIrgbG9SkYho8WLZshLTUNi5ctZC+nkctoJUWd9O4YHZAi8AYCZ8+eZcmSr68vpn45DTK5AubmZsjLzYHozkBAbl4CXipYtv8bgBxCng0szS1gZs3H4MEDWBJJIoaElJBoMPmTmprKRolbtnx5CcaQLSQkBKGhoSyRJX/CHzxHVEwEGx0UCM0gy+fD3twLmdmZUEEOjsICKgUPonQzqMQWUJnlgMMoIbQXQ/TCDWbOqRDnWoLLKMGxyIMs3RGCmnfB5HqhINUdjEzIkt0SGyMBxywHjEABgcdjKOVcWDmpIFdJoCywQm5ooyL4Mg4vYFsvEgqVGEIhF9aWjkjPSgVXxYGFHSAukIEr4EAhl0Eh44NRmoGR20Iu5yI3SQm+jRjyDFfIs+zB9b0COycrWFrbQCaSQiaWI/VmS0BB7gKoAJDIs5L9b75LDBS59lCKLQGOHBzzAqhUHPCsM6CCCox1OhihAkIzBlDJYGHFAfhK5OZlA3wpzMwY+Nepi7lzZsPZ2dkg20vI9e3bt/HgQSi++moKiFY5qSCp72YowjuDMU6Ed7nydYQ3v0CMniNnsrm4zRv5Y+HqXRCJJPh1zsT/t3cfYFZVBx7A/7e8/mbe9BmqVEUEJCKxxQ1qTDRZjcFkU9QYNSp2TTRGY9y4cS3raojgWmKJIbGtZY0xGmMsoAioiFSRXoYZZpj6+rttv3MGDOogF2be3Ln4v9/HZ+G8d877nQvzf+eegrUbG1Df0IyjD5uAjmQa3zr7Osya8QsMqqvqbeKP3o+Btwe0DLw9wONLe1VA/IC/4oJfIJVNoiPTKEdD7M0TERi0HNAtPP/881yE1qvifLPdCYhQu3jxYjka+I+XX8OG1Y3YXL8JuVQOSjQHQENQj6DQWI5s2xCokVaYGycAdjeP5BUbsXFvIr3mAKgIQot1Ijh0mfwi5+QTsG0DVQNVqFoIplFAKpWFHnIAW4Gj5RGLxhGPlkALBlA9IIzyRDX0QBiXXHruHo8UiiAt5tGKXx+u2IBc1oLuRJHMtCLTVIr85mFAIAeIEWorCCdTBuCTh7aIALhnB7nsznuXv68YgPPp6RSOYyJ+8DxEyxRkmyLItNbCyWsQ58sojg4l1ojI4I2wMuUwWithZ0phtYvPsqs5tw6UYBJQHSgBwE7HAFvf62bv/EJFL8BRLKByBcoObMCg2lFoaWpBqtCIL085Eqeddpr8AvVZl/iSv6eH54j3E1MbxN+nN1z/a1x97VW9Pl+6WIH3Jx4F3jt2CrzCb+47S3HLjEewrbUDE8eNwk0/PxdliTgef/YVvPT6O3jgjp/hmRfm4LpbH0Ag8PH75bUnp8uyvXUx8PZAkoG3B3j74EszmUyfhsrOzk60trYinU7joIMOkiMQtbW1OOecH2P9+nVIzT0ZJYe9gEg8hAPHjsWmjZtwwonH48wzz5QnoL399tuYPHnyPtgT/Ei9JSBCwrx58/Dqq6+iUCjgxBNPlFvadXeJ+3/lypV4f+ESzH5tAVqaO5HaFkIhGQRsE4UtIwDNAYwIEG6T4SNcWUBmffeLV/b8M2wPkVoBsLoedyvBLBTdADQDUGyoge3/7qgIjVyGn151Hv715BNdVSU+/yUXXIV1K1phpmPIt8fhFMKw0gk4OTEqLUYjRYjd9RxaVxWx0C4F1JJmKMEC7GQ5HFNHePRbCNa0Ix6tQFtLM0pLy6HoJsoTNYjFo5h8xEEYOnSonAM+44774SgF/PJX18j54HsTfovRNcUKvFd4FHh/84nAWwyzvX1PBt69lQPAwNsDvH3wpWJum3iEKv5yLebV2NiIWQ89jnlvLUSyxYapJHHGOafg2GOPwe133AFNi2HRwvlIzz0Fakkr9Oqt0MrWQAkX8M1vngzVCeOCi8/BfXc/gAsuPo/H/xazs3z+3s899xx++x9Pwg6kESoxMXDAUMTLVBw8YQI6OjvxpaOOkl+aRBg8/+wrsO79HAod5bCTZbBzJYDZP1fgq4NWIDJ8CW655aZdBnjRdWKurRjJffed9/G3v/4Dya0RpBcf6fNe3bearwQ64ECRQdhRxBSMAhQnjNDQtYAphqtjgNoCO10JJdwCpSyHsK5ixIiRqKgsgarrGH/waDl3WUxZiES6m1JTPLNiBd7LPQq80xl4i3ezePnODLxe6n9+6v7NbTPxzsIFOOmkk/Hd75+K2/7rt3j5pReRTzrILf8KlFgz9Or1mPAvVVjx7gao6mCk1yZgt478J5JiQ0lsgV6xFsGBjThmyrG48KLz5QIQXr0nIEbdxYKaT17Lly+XP0zLysQj4a5LjM6LxUFi3qcYpRc/aB9++GEcf/zxmD17NqZOnSqnBIwfP17OU3zsscdksBSLeETZSZMm4aLzrkB5TUz+sFYUFS0tLRg8eJB87Lrj19FHH93tBxRtEouOdrRXbBMl6lu8eAm2NjVhyeLF0HQdKMSxec5oueiodNyHqKiKIZvJIVYWR0dro5xTmc9koZhRdMz7Wt89qt+bbqvYAL18M0ID6jFg4AA88qc/fvQuYh7uewuXYM6rb6Ozsw2dyXbYhoNMcymyTbVQs+Vwcv1vN4G9Yfj8vWanKSRinnMwCTWahxZvh5HtWhgZqUoiXNGJH/xwKs444wyIhXriCUex1zkUK/Be6lHgvZOBd9/848XAu2/2a3/6VGI0d8b0u7F+w1oMHDgAkyYfgu9973sQuzFcdOFPENB15I0C1FQNFM2EE03D+nASsk3dryq2kJTTHIaPGI7qqhr86sbr+nQaRn+yddsW8UNPzEfdsSp83bp1MqA++sjjiEWjuPa6a+RbiXnS99x9H777ve/g9NP/uc2UCKk/vfwXmHLc4bAtHX99/q846Ztfw+OPPokRo/aDWPQk5nM6hQhM00AiUYXmbWLPZA11g0vkSJSYR7hg3ttQrQqENB2BcAhtySaomoNgUENt3RAYRgGNW5owaL8yHDh+HDrbW7B2RQNaOxpw6ORDkEon8eGq9TjqS4fKRV0rFq9DJBxBpBQIRyJo3dYJKxVBJBZHMBhGtsMGrAjqF5UB6R2r9k1ANwEzACXRApgaIkM2AsEMMouP6NeP8xU9iejhL0NDGJoKTJ95s9z2SwSbi6ZdgZa2JjQuBwqN46CFLFh2HsjFgSy/FLr9s+L3coFBSxCMp1GyXxq6qsFRg0gkAkiUliEcLkMkbsovrWInnEMPPVTuxNHTLdWKFXgvUb05eGKG/c+DJ/rb/cApDT3oEQbeHuDxpbsVECHrkouuQsOWLYBtIVfIIRqPwrIM5LMmEqVVaGlvARwVdssApD8Yi8RRr0GFim2zD4OmfnqkUaySjk6YA6WkCbF4GE888QQDbzc9UV9fjzlz5mDs2LG49ZbbkOrIoqqyFv9x87W4+qe/QNNGFQUjCTWexPFf/bLcWur9hUuxdsMqwNHkjhhi/9EbbvgVnn76acx/Y6kMlOm0AcdWgHRIhtxcSxmgBmGbQSAfgAINtq3KHTYc1QBKtiFa3gktqCK5chRgBwE5R3X74g6xkj+Y6ZqnGjAQDpmondQKXYkgkzTQtq4EdnyjDLaFjjBsI4KykdvkCLHYMcB2HCRbc8g1VSLXEYPdUQZYsd3em74toOQQGL4IsYFtePavj0oH8YXj6suvR9u6GlhbDpLbaPH6PAs4iI2fD5Q2o/DhF2ArnVBjSdgdAwDNhKrbCNauhRJPyakU4UAEhx05EaWlJTjppJP2eE/jYgXeiz0KvDMZePfNPzwMvPtOv06bNk0+Ys6nAcPKYuiwQWio34pwKIJQOIJMOouBg2pxytSTcOyxx/bZBxcjceIH8q9vuBUwQ1BCBbmVEUIZqFYUmh1H+4eDgI5BgJZF5RffQ+3ABDYsBVLLJ8jH3DtfYhS49Ii/wUQS4XAUzzzz1Of+pKNPdqYY8fvDw4/gz//3AtKZNhittciuHYtIXT2Uqi1wzBzS754ANdEBrbRJrmgXOwvo8SYUHBMBpwwl5SFkzTYEY1mk1g2BlUrAyiTkyv2iX4qzffHUZ9VkA2oOsHdsGdVHOwYU/cN/RgWKibIj5yBSauLMH/0AzVvbsX7jKixZuAId9TXIr5zkZetYd38TENPAVFtuIdftFchDTWyCYgYRH94GM7Yeju3g5luuxxFHiKcd7q5iBd6LPAq8dzHwuut4v5Vi4PVbj/2zvWID9Wg0imeffVae/DP7lXnIiZOANAX5XBaqFoBj23AUEyo0sYMSFMVCeVklSqNluPiKaVi2eC2++4OT5TyvG355EyYfMRlTphyFa665Rp4IJU4wGjJkiCskMRooRgnFHqKfvD744AOIvxRXLF+NdDIFVdeQy+a7pjA4KhRLg9kyGKGqVkz5ymSs27gWjR/m0fDmF6GJ/YE+lngdlB02G4baDqhZXHXVVTjhhBP65EQhVxB9WEhME7j37vvxhYmH4PCjDpWLUMXOFeJLxuuvvikffWfzNlJzxbzU7Zfc4kn0kZuA6ABKAXA4YtiH3brLqpTqNTjunBiWLlyKbLYA00nDrB+OfOMwICvm5rrp0/7wSdgGTwVUE4pmwDEiCNRsQnT/pVDMACw9ieq6Cjz04AN7tPCtWIH3Ao8C790MvJ7enkWrnIF372inT5+ORe+9j4GDBuC4446Tv8QlAoiYH/nOO+9g2LBhckGP2GZLBFIRBocPH95thWKPRLHNlttL7At6yYVX4PobrsV5516IfFoB9AwCWkw+blYVFYadlXt42oqJ6opaVFRVIhwFOloNJJNtMJ0sHCMMxVYRCOnY1t6AWLQE+XwKluXAzgWg6A5qBlQjn8/CsTUc85XD5KlHYgGS+KdYxCRONrrhlzdjwbvzoNulmDBpf4zaf6i0EJ9dzDG8cNqlsCwgFg2hpCSGCV8YD3FEqJgbauRURKJBdLanEQxEYOQ15JsSSH84YZfzKcPjXoFW1gnYBspKq/G7h2bs84vXxBcKcdDGJy/hePddv0P92hQsZGBYBtA5DLmGCvkDzU4n5JQRXv4WiI1ehdCgDRhz4Ci8/2YTsqsOhFMIwLH65y4S/tbeN1sfGLEIdiYGRSkgNGKFnLoUUmvgKEnkrTRGjhqKBx64f48/fLEC7zT1kT1uS2+84B77B73xNkV5D87h7QErA28Xnth/U8w33REoxH+Lc+DHjRv3sRFLEeLEXrEXTLsUyc6sODQJEPtkWnHUDSpDoiwhj9aEEZWbn1sQo5kKzJyKs879vtw3UWwRVL+xEZf95GIZjF9+8Q04agH3P3CvPH5S1CtW1YqFBeJoyl1da9eulUdgin+KBSuqBji2ilisHEYhh2SmDSFjKNoWj4FiOdBKM1C0PCwjKNum6nlYmRI4ti7/v17WDjsfkb8c8f/1LNRQTo7wqUEbthFHpGIr9LIkbC0LTbekjVgYk0sBZtNQGFsOBOqWoWRAOwJqKczwOpREK5DJpWDbFmzHhJ3XETCGwDBtGGkNdqoK0CzY+RDsXBjIiy3RdjNSVbcMsVFL5Mj1zbfe1CenUfXgj1mPXirm4f7txb9j5QdbcOfMX2PAgAEfvZ/YleCss85HZ3sHgtZAeUBCatEXALukR3Xyxf1PQAl2Qi3pkCHFaqvjl5j+10X9ukWOYyF+9JNQEIKqKqgqr0am0I7a2jqsXv0hystqMO2Cc/DVr351jz9HsQLv+R4F3nsZePf4HvDFCz5vgXfH9kkiJIpVqq/Pno2GLQ1o35aDbZuIluoIhkJobmqBpqlySkBFeRW0ABAvKcHGDevl3EKjYKKyugLZbAaaqiObNqCoDoJhDZlMHqodgqWIUVtTvo8ljopXQghqQeTMTmhaCJodg+Vkkd2aQKCmAbV1dRg+fD/Mn7cAVqoagWgHLr7iPLnpuBgt3nk7KHFzieAtLhGOly1bJlfYr1y5FsmGMBBKIrdiMqzOXRzf2dO7U7XlnE+x2MjRskBWrIDvJqRGt0GxxUlS0a6TkhR7739QqzkEqtfC1lWEByyDErYwcNBQPPzw/Xs0Ot7Tj97Xr3/yySfx9vx3sWblZtxyx7/L05jEHN17/ud+zJ3zHtKpNLL5JCzbRmrFQXBau3+K0NftZn0UoID3AuHR7yNS14RcLolwMICSqhiqqytRMApyoGDqt74ld2kQx0jv7VWswHueR4H3Pgbevb0V+vfr9pXAK0ZFZ8yYKR+1T558qJxCIMLt4iVLUF5egeXLlqKqagAa69sQ0UtgOZZczJUxmmG0lCLfOAJKIIfE4FzXdkadBblCvGywA1hxKFoOihOCVdDRuiUFLWzAziRgw4amiGAMxKosZDscONb2TCe2TbRDclqBZTpw0jVyuoEWysB2tO0biquIDF+DaFUbAvZAZDMGnGg9dF1DMBiArgdgW5Ycga4ZVIb21jSioRiam7ehJFaOXDYHPaAjk80irEehhDOoHViODRs2IBGvRntnJ3IfTILVMrh/34i7a51io+Tw56GG8qipGiy/QPz8F5fJHQh2bLW1u7fw0+/vOEJU7IkrRtHFk4H58+fLaSLiWNgnHn8a+YYapD+Y1DUftydfJPwEw7ZSgAK7FYiOXIXowCaIo5edUBI/Pv98PPn4Y6gbWAcVDm6//b979ZS2YgXeH3sUeO9n4N3tPebLAn4MvOKxrRidXbBggdzA/o033sDKFWuQTqdQWzsEzVsbgXQtFE2HlQ6hbJCF9vxqZFZNgNlSCTjhrvPprQCUUBqwNTgFsdLbo+uTK9LDHdB0kZYdWIYiF6GJLZvUSBaWEYCq2rCzQTj5Ujiw5XxdRy5qt6DG2qDFUnDEtAURqqPtMDYf+M8toPr0I9p7tqepnoUWNOXeqKoIcKoBNZxDuCyNcJmBSExH3YAqXH3NlXLusN8vMR2hqakJItSKL2dvzV6MhsYt6GgTW39lIR5BWmKah23BUfNINtkIBBIwzQIKRg7mhi/AyXW3bZvfZdh+ClCgJwKBwSuhhXOwo5sQKE3hptvvwnNPPYJvnzoVhxxySE/eutvXFivwnqP+qdfb6uYNH7BPc1PMkzKcw9sDdq8Dr/hBL0asxFxZMaqVTCbl6UpiEZcY1dz5xKfNmzfj5ptvRigQxtLlS2BZCjRFgWHloSpiFExF+r0psDPRTyzkEOFJPILfxdYsPfDjS3ctEJs4F9DT0EyxT6vwV2DlgnJxndGxPajZYbmXanDICgRCKmoqB0EPKfji4RPlgjfxqE1M6RC/utv9wU/+q1atgthZ460338XyhWswZN8+AAAbxUlEQVSwpbEZ2U4FihVGplWHk6qS962Yy+zkxUIk8YhRfPHZcXEFvp/6m22lgLcCDiKjV0KtXYQjv/QvOO3735VPxHZcO37W9kYbixV4z/Yo8D7IwNsbt0X/ew+vA68IsP94cS6CIXEYQQawol07DCht0HUVWkDF8CEHAHoeq1evlotydr4i4TgMIwdF1eRhBumlR8Ju9fnj+/53m7hrkZYDdloxrgQ7EJ/wDhDIIxS1ESsJy3nI4guN2E6trq5OnvYlpiRs27YNZ599NkaO3OkoYXe19kqpXC4nd5vY090ydlW5eL+5c+fivfnLsWbNZrS1tiPVBuRSGlIbq2GnS+DIxXm8KEABChRHQAnmEPviC4hHyzD1OyfgRz/6kaxI/Nz/5XW/wpeOOhKxErHAWsExxxwjd9TZm6tYgfcsjwLvQwy8e3Mb9P/X9EXgFSO4Yl9QseOA+LXzMYbTzr0UKxa0w+hIAAEbTqoSWrwNjmVBL+2AmdNhpaqgQkF82GYEwioQyCCTSyJg1SLTosPcOhx6qVjBvA6F1cfCLnDP0GLfedHRK1DIODDrxyK23yaE9lsOVQeCekTu+mAWAJgROJaKbFKs2MvByOjQS1PQQgVUDYhj1p8e3OX8WxGAxeP+nUckivWZvv3tfwOsAMyCgmwmJ58UiB8AlVWlGDNuBM744Q/kbhhuLrGYbOaMu/Hcn/+OQks5jPoRcAolckqJY/C+dGPIMhSgQG8JdD0hih38OtREM8aNnQDTNhEMBLDo/fcQjyVQVVErFpvg1FOn4hsnf22v5vYWK/Ce6VHgfZiBt7duwP71PsUOvGKhzY033oiSkgRMy5Q7EaRTSXzj61/HqaeeKo8uffTRR/HqS/PQ0iFOfALkwVq2juzWauQ//CKgGV2Pdq3tJzzpBcDcsXE+H/N6cUfFD50NvaQF0VCl3MbMyAKZ1gCgZRAsMaGFDOTNJIbuV4eDxh+IFStWQNN0uR3OpEmTcM4553w0RUEsONy0aRMa6pvw/nsrsGHjBpiGBVvJ4OlnnuzR6uHPshHH5T7ywPNoXq+isHUonEIcdjYqF4ApWgGlk94C9JycavH0s4/s9jQ3cS9fNu3n+PDtApz2obAypXJ7uo9d4l4Wv7ycM+7FDcM6KUCBPhNQgllExy6AoivIrhsIJ5BGbOQmqKojpw7aSkHuqXPQmAmYPvO2Hv8dW6zA+0P1j31mtnNFf7BP96ReN5VyDq8bpV2UKWbgFaO6p3/3XGS2JuQ+tWIeZ6LOgB7JA5qDQUPLMHPmzI9aNnv2bLz88stYvHANUh1ZuSBL13QYyMkRwsL68XCyMdi2Jkfk5H6x+Yjcl5JXHwsoDoIDVyFSUUCi1oBWkkEoHJDbtSmKJrdza29rQ031ABxwwBiM2L8OJ598spzKsOMSf/FeftEvsWltEzq2hKAktqC6NoGmto1yn2DxiG3//feXxyDv/FRg50+6dOlSuUXXxIkT9whAjB6fdtrp6HjzK4Dx6cMcxJsFR74rRztUJ4SaMS14/OlZn/mD4d5778Wf//wcjLwpd2izHRthrRJmRocdaJfzzMWBHgY64LQPkosJxWEeYkQclgJHzNm1NDiWOBJPfMH7xAlze/QJWZgCFPj8CTjQh65AbPhK6GpA7kaUSWVQUhaRC7yra2owZPAQRCJhGXzPOussubNRT69iBd4zPAq8sxh4e3pL9M/XFzPwik/86quv4r777oNtqgiHStDS1AnLNOVBA6pm4Ymn/iRPINtxXX/99ViyZIn8f9/4xjfkr+XLl+O9996TK9nfeGMuoqE4Wtqa5SEG4spvGYb8qsn9E/hz0qpAzUaEyrIoFPIID9wCXR5rrMByCjDtHA47fCKmfvsU2a9iIWJVVZUMv7+75w9Ys2qdPB0sZ3Tgrrtm4Morr8SKFR/AKFgwzbwcWb3gwgtk2BQL18Rf3OLf//PXt0Kxoyg4LairGYg/PTprl4/jxNHGDz74IBobmuTTg+aGFJxsFK0LJ3ZtHffRZUMNilHYAhRxznzAlNM1QjEF98+6XZ4ut6srm83KrcPErgsrV66Uiy5FYBenyYkfCGLvZcPIyrarCCAcjqE0UQbDKMiR71zWgGGIBZji3y05GmMXgmh/q+sUP14UoAAFuhVQbGilzRC7MwQqxXZkFkrjZXjqmf/t+tLegz123YgXK/CernkzwvtHiyO8bvrdd2WKHXgFiPgmKX7t+EO3Y6GS+D1xaMKOq7W1VS5KE/8UIVcsbhIje+JRsQg5L774It56a57cm1YsUBNbcVnpUuSWHtU1T5KX5wJqJIlA9Sa5yFDMHlOgQLWiCAxdKUcVSsrDMPJ56IEg2relURqvlFNYho0YgCnHfkkGShEQxbSH306fif979iloahiKPBpX7CBpwSpoXYdZKBnkVx8Bp3YpSuo68Je//KXbOcEvvfQSbrlxJqy2ciCch5OJws6Wdv0giGQRSViAXoAWNGBaeXmQSMFIIxqNIRotQTyh4Gc/v0qG1x2X2A9XnKgnpmKIEC4W3oldJcRODK/841U01LeIT46Ozm0wC0GIiJszsvLkPdsMwWwth52uFlPnoEA8oXBgmQFxVJ58nWMEpJ9jB2B3VHner2wABSjQfwW0RCtKD14AVXdgWGlYlokxB4zF3ffc1SeNLlbg/YFHgfcRBt4+uW/6vJJiB94Zd96NeW/Nl/M3Q8EQotEIRowegssuu0yuiBe/RFj4/UN/xKxZf+g6sUEczqCFYeYVwBCjeUE44lhaS4Wqq7CsNNR4BqqtQS3UoP29Q+Reurz6r0BwxFJA3QakhsHRDVQMMtGyISCnqFi5EgQq6hGqaodtAsGqZmhKRO67Gw5FoUcKctRUhMxIJCLvF/FPI6egsz2LUWOG4Fc3XCf/X3eX+BIlphuIw0jE/rbZbFp+WYqXxJHNZFBWXo6a6mo58iz29xWhe8SIEYjH4/KL1o5L/Fl58L5ZWLN6MyxDhZWOopDWoSkBOJF22AUdeiCATEMp7Gy5DK1i5FYsovz4gjULkCGXFwUoQIHeE1ATWxEe+S7UWFL+PXn55ZfLUzrHjBnTe5V0807FCrzf12YVtd27evNHrTM8qddNpZzD60ZpF2WKHXjF4RBiisKOfXXF3n9G3sJ/3PgrORp27TXX4aBxB+K8885DfX293JNXjJq98MJLMLMK8qsPg9kyoAefkC/1pYBmQg2lER03B04wJUddxbxey7agKkGoCjBs5H5yeswpp5yCo48++lNHL4uALJ4miO3BxAI1MY1C3H9b6zuRy+WRSqZQUhpDPiu+eIkZtJo8Qa+QM6GHHIQiOvKFPOKxGDKdQLYtALN5EPJbhsKxty+g9CUuG00BCuy7AjYCo+chWNYp11IokSTKSsvxjZNOxGGHHYbBgwfL3ZJ68ypW4P2eR4H3MQbe3rw9+s977S7wGoaBm/7zNsTiQTm9QATXRYsWyW+MBxxwAEaPHi2/QYprx9SFHf+uaZrc7++VV15BRUWFDBxTpkz52JxdsUJ/4cKF8vQXMeVB1CcC8huvLUBbRyuam1qRa6xBRhyhyutzJxCfsAABMWVAbJ6g6PIRf97ZAEfPIRyJyeOXDxw3Bg1bNuOYKV/GwQcfjOeeew5LF61DW1MHbEuDkYzBCaSQbxj+0bxYxwjDFjt9iBP37ABgBrpOsytvRnzkclRU1cE2LHR2qDAzOaTXjoDdKbbv4UUBClCgfwuUT1oIxBvl9ChxrL2tZeGIvb8LCQTKWzGgthbRaByVdWG5OFj8PP+s9Qm7+7TFCrzf9SjwPs7Au7su9+fv7y7wik/1xBNP4LVX5srtxDKZLNo6m7pmZyoi5EIG1Xi4EgFdrPy05T6mYrFRTV2VfKyyeu0quZgpGgvja187Xj4qFq8RhxDM+v3jaO9slngxezQcOGheq8JOV3Y9Ci5E4BTEqVO8KLBdQLEQGz8HWqIDVVW1GDVqvBzJ+GDZMiSbgWxDDcx0HFZnxfYdPPZi6zpxtLGcN8yLAhSggN8FulZUiEsJZKHoFvTqNYgMXyWfmmlKGAcecBDqBtZi4/qNKC2L4JjjpsiBqh2nXYpFuIlEotuFwcUKvN/xKPD+LwOv32/47tsvAq9Y7CPmOYrV8OKIX/HY991338WoUaNRXV2FUaNG4e2330Zz8zasXbsGqVQa6bR4HFwK0zAQi5Zga5NY/W5j5LBxaGltghpw0Ni4Rf4ZK2wdLKclaKG83EtXrN4Xv+GIUGGGAFvMhxTfPj+xZ+m+Sc5P1RsCignE2qCXdMjdFuRijbYabuXVG7Z8DwpQ4PMhIHajibVAU1S5jaIMwuWtUAIpBGImgmoprOhGJCJ1MK0CClZGLiYPhcPy0IryyjgOOHCY3EXpzDPPlE/YevP6tvaH3nw71+/1pPVD12X7uiDn8PZAXDz+veM/H0ZMG4J0NgtNNwFHgRLfilikEqn2gtzGSdVtlFYE5B6rtmPIUVwxSiumOIjFZI5qwjJTsJCXfzDEJaY4iN8X5YJqHMFgRC5Ksk2xYEc8bAnIrcV0lCKHLXJFv2Fl0fnmSXJFPi8KUIACFKAABbwU6DqtTQxeKcGMnBYG1YITyECLpAFHR2jwKlxx7Zk46STxs7v3rlM9CrxPMfD2Xif2p3cSi3l+c/XryK8f202z/vkYpNs2ixFaxYSi2UAoCT3eDseMyAMmFHlkmiUmXkJRTTgiRIt9TTUbSjAFJWjIo2jFgRJ62IaJFDRdkSvxk3NP7hr55UUBClCAAhSgQL8WCA1bjitu/TKmTp3aq+2c6lHgfZqBt1f7sd+82WcH3n7TTDaEAhSgAAUoQIF+KFCswPstjwLvMwy8/fAu64UmMfD2AiLfggIUoAAFKPA5FShW4P2m9rAnos9aZ3pSr5tKOYfXjdIuyjDw9gCPL6UABShAAQp8zgWKFXhP9ijw/vkTgXfO/CX473seQ/O2dowbMxw3XXMuqioSn+p107Iw/XdP4qHHXsAbz85AeaL3T4Bl4O3BHzYG3h7g8aUUoAAFKECBz7lAsQLvSR4F3ud2CrzJVAYnnPYz3HXT5TLs3vXQ/2H9pgb85oaLP9Xrl/zitxgzaijumfVnzH7mTgbe/vbngoG3v/UI20MBClCAAhTwj0CxAu+/ehR4/7JT4P3bawvw1POzcd9tV8oOEQH46G9digXP3y0PPtr5+mD1Rhl4xx97FgNvf7x9uwLva8hv6G6Xhv7YYj+1aft2Ln5qcr9vK017u4sUcYIMrz4XENs28uptAd7LvS3a9X6f7RraT+zSMKXXd2n4uvb74nyc3bzrX60ffVTi3lnPoaWtA9deevpH/+9fvnUp/nDntRg2pK7bd2Lg9aTbdl/p0qVLcdlll3d7esruX80SFOhrAf5A621xiva2qLv3Y9x157Rnpai6Z169V3r69N/Ig6t68zrRo8D7wk6BV8zJtSwbP532bx99tK9+70rceeOlcjS3u4uBtzfvAr4XBShAAQpQgAIU2IcFTvAo8L64U+C974/PoWlbO667/IyPpL/0zUvwyP9ch6GDahl49+H7jx+NAhSgAAUoQAEKFF3gax4F3r/tFHj/PvsdzHryJTmFQVxbm9vw9dOvxvy/3g1dE6fGfvriCG/Rbw1WQAEKUIACFKAABfYNgeP1hzz5IH83z/qo3nQmh69+/0rc/u8X4tCDD8BNd/4J2WweN197LtZubEB9QzOOPmzCx9rJwOtJt7FSClCAAhSgAAUo4D+B4/QHPWn0P8yzP1bv3HeW4pYZj2BbawcmjhuFm35+LsoScTz+7Ct46fV38MAdP0N7RwpTvn25fJ1hmAgEdPnvLz9+e7d79u7tB+M+vHsrx9dRgAIUoAAFKECBfihwrEeB95VPBN7+RMPA2596g22hAAUoQAEKUIACPRSYoj/Qw3fYu5e/Zp6zdy/sg1cx8PYBMqugAAUoQAEKUIACfSXwZf3+vqrqY/W8bv7Yk3rdVMrA60aJZShAAQpQgAIUoIBPBI7Wf+dJS+eY53pSr5tKGXjdKLEMBShAAQpQgAIU8InAUR4F3jcZeH1yh7CZFKAABShAAQpQwOcCRwbu8+QTzDXO86ReN5VyhNeNEstQgAIUoAAFKEABnwgcHrjXk5bOM873pF43lTLwulFiGQpQgAIUoAAFKOATgcM8CrzzGXh9coewmRSgAAUoQAEKUMDnApMD93jyCd42pnlSr5tKOcLrRollKEABClCAAhSggE8EJgXu9qSl7xoXeFKvm0oZeN0osQwFKEABClCAAhTwicAhHgXehQy8PrlD2EwKUIACFKAABSjgc4GJgf/x5BMsMi70pF43lXKE140Sy1CAAhSgAAUoQAGfCEwI3uVJSxcXLvKkXjeVMvC6UWIZClCAAhSgAAUo4BOB8R4F3iUMvD65Q9hMClCAAhSgAAUo4HOBg4IzPfkEywoXe1Kvm0o5wutGiWUoQAEKUIACFKCATwTGBmd40tLlhUs8qddNpQy8bpRYhgIUoAAFKEABCvhEYIxHgfcDBl6f3CFsJgUoQAEKUIACFPC5wP7BOz35BB8WLvWkXjeVcoTXjRLLUIACFKAABShAAZ8IjA7+1pOWripc5km9bipl4HWjxDIUoAAFKEABClDAJwIjQ94E3jV5Bl6f3CJsJgUoQAEKUIACFPC3wIjQdE8+wNr85Z7U66ZSjvC6UWIZClCAAhSgAAUo4BOBYaHfeNLS9fkrPKnXTaUMvG6UWIYCFKAABShAAQr4RGCoR4F3IwOvT+4QNpMCFKAABShAAQr4XGBI6A5PPsGm/E88qddNpRzhdaPEMhSgAAUoQAEKUMAnAoNCt3vS0vr8Tz2p102lDLxulFiGAhSgAAUoQAEK+ERgoEeBdwsDr0/uEDaTAhSgAAUoQAEK+FygLvzfnnyCxtyVntTrplKO8LpRYhkKUIACFKAABSjgE4Ga8G2etLQpd5Un9bqplIHXjRLLUIACFKAABShAAZ8IVHsUeJsZeH1yh7CZFKAABShAAQpQwOcCleH/8uQTtOR+5km9birlCK8bJZahAAUoQAEKUIACPhGoCN/qSUtbc1d7Uq+bShl43SixDAUoQAEKUIACFPCJQJlHgbedgdcndwibSQEKUIACFKAABXwuUBq+xZNP0Jn7uSf1uqmUI7xulFiGAhSgAAUoQAEKUMC3Agy8vu06NpwCFKAABShAAQpQwI0AA68bJZahAAUoQAEKUIACFPCtAAOvb7uODacABShAAQpQgAIUcCPAwOtGiWUoQAEKUIACFKAABXwrwMDr265jwylAAQpQgAIUoAAF3Agw8LpRYhkKUIACFKAABShAAd8KMPD6tuvYcApQgAIUoAAFKEABNwIMvG6UWIYCFKAABShAAQpQwLcCDLy+7To2nAIUoAAFKEABClDAjQADrxsllqEABShAAQpQgAIU8K0AA69vu44NpwAFKEABClCAAhRwI8DA60aJZShAAQpQgAIUoAAFfCvAwOvbrmPDKUABClCAAhSgAAXcCDDwulFiGQpQgAIUoAAFKEAB3wow8Pq269hwClCAAhSgAAUoQAE3Agy8bpRYhgIUoAAFKEABClDAtwIMvL7tOjacAhSgAAUoQAEKUMCNAAOvGyWWoQAFKEABClCAAhTwrQADr2+7jg2nAAUoQAEKUIACFHAjwMDrRollKEABClCAAhSgAAV8K8DA69uuY8MpQAEKUIACFKAABdwIMPC6UWIZClCAAhSgAAUoQAHfCjDw+rbr2HAKUIACFKAABShAATcCDLxulFiGAhSgAAUoQAEKUMC3Agy8vu06NpwCFKAABShAAQpQwI0AA68bJZahAAUoQAEKUIACFPCtAAOvb7uODacABShAAQpQgAIUcCPAwOtGiWUoQAEKUIACFKAABXwrwMDr265jwylAAQpQgAIUoAAF3Agw8LpRYhkKUIACFKAABShAAd8KMPD6tuvYcApQgAIUoAAFKEABNwIMvG6UWIYCFKAABShAAQpQwLcCDLy+7To2nAIUoAAFKEABClDAjQADrxsllqEABShAAQpQgAIU8K0AA69vu44NpwAFKEABClCAAhRwI8DA60aJZShAAQpQgAIUoAAFfCvAwOvbrmPDKUABClCAAhSgAAXcCDDwulFiGQpQgAIUoAAFKEAB3wow8Pq269hwClCAAhSgAAUoQAE3Agy8bpRYhgIUoAAFKEABClDAtwIMvL7tOjacAhSgAAUoQAEKUMCNAAOvGyWWoQAFKEABClCAAhTwrQADr2+7jg2nAAUoQAEKUIACFHAjwMDrRollKEABClCAAhSgAAV8K8DA69uuY8MpQAEKUIACFKAABdwIMPC6UWIZClCAAhSgAAUoQAHfCjDw+rbr2HAKUIACFKAABShAATcCDLxulFiGAhSgAAUoQAEKUMC3Agy8vu06NpwCFKAABShAAQpQwI0AA68bJZahAAUoQAEKUIACFPCtAAOvb7uODacABShAAQpQgAIUcCPAwOtGiWUoQAEKUIACFKAABXwrwMDr265jwylAAQpQgAIUoAAF3Agw8LpRYhkKUIACFKAABShAAd8KMPD6tuvYcApQgAIUoAAFKEABNwIMvG6UWIYCFKAABShAAQpQwLcCDLy+7To2nAIUoAAFKEABClDAjQADrxsllqEABShAAQpQgAIU8K0AA69vu44NpwAFKEABClCAAhRwI8DA60aJZShAAQpQgAIUoAAFfCvAwOvbrmPDKUABClCAAhSgAAXcCDDwulFiGQpQgAIUoAAFKEAB3wow8Pq269hwClCAAhSgAAUoQAE3Agy8bpRYhgIUoAAFKEABClDAtwIMvL7tOjacAhSgAAUoQAEKUMCNAAOvGyWWoQAFKEABClCAAhTwrQADr2+7jg2nAAUoQAEKUIACFHAjwMDrRollKEABClCAAhSgAAV8K8DA69uuY8MpQAEKUIACFKAABdwIMPC6UWIZClCAAhSgAAUoQAHfCjDw+rbr2HAKUIACFKAABShAATcCDLxulFiGAhSgAAUoQAEKUMC3Agy8vu06NpwCFKAABShAAQpQwI0AA68bJZahAAUoQAEKUIACFPCtAAOvb7uODacABShAAQpQgAIUcCPAwOtGiWUoQAEKUIACFKAABXwrwMDr265jwylAAQpQgAIUoAAF3Agw8LpRYhkKUIACFKAABShAAd8KMPD6tuvYcApQgAIUoAAFKEABNwIMvG6UWIYCFKAABShAAQpQwLcCDLy+7To2nAIUoAAFKEABClDAjQADrxsllqEABShAAQpQgAIU8K0AA69vu44NpwAFKEABClCAAhRwI8DA60aJZShAAQpQgAIUoAAFfCvAwOvbrmPDKUABClCAAhSgAAXcCDDwulFiGQpQgAIUoAAFKEAB3wow8Pq269hwClCAAhSgAAUoQAE3Agy8bpRYhgIUoAAFKEABClDAtwIMvL7tOjacAhSgAAUoQAEKUMCNwP8DM7dTG+FbO3gAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "from IPython.display import Image, display\n",
+ "\n",
+ "px.choropleth(countries_df,\n",
+ " locations=\"Country\",\n",
+ " # locationmode='country names',\n",
+ " featureidkey=\"properties.ADMIN\",\n",
+ " geojson=countries_json,\n",
+ " color=\"Score\").write_image(\"tmp.png\")\n",
+ "display(Image(filename=\"tmp.png\"))\n",
+ "!rm tmp.png"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/evaluate_detexd_roberta.py b/evaluate_detexd_roberta.py
new file mode 100644
index 0000000..2bba059
--- /dev/null
+++ b/evaluate_detexd_roberta.py
@@ -0,0 +1,32 @@
+from transformers import pipeline
+from datasets import load_dataset
+from sklearn.metrics import precision_recall_fscore_support
+from tqdm.auto import tqdm
+from transformers.pipelines.pt_utils import KeyDataset
+
+
+def predict_binary_scores(classifier, texts):
+ # get multiclass probability scores
+ all_scores = tqdm(classifier(texts, top_k=None, truncation=True), total=len(texts))
+
+ # convert to a single score by summing the probability scores
+ # for the higher-index classes
+ return [sum(score['score']
+ for score in scores
+ if score['label'] in ('LABEL_3', 'LABEL_4', 'LABEL_5'))
+ for scores in all_scores]
+
+
+def predict_delicate(classifier, texts, threshold=0.72496545):
+ return [result > threshold for result in predict_binary_scores(classifier, texts)]
+
+
+if __name__ == '__main__':
+ dataset = load_dataset("grammarly/detexd-benchmark", split='test')
+ classifier = pipeline("text-classification", model="grammarly/detexd-roberta-base", device=0)
+ predictions = predict_delicate(classifier, KeyDataset(dataset, 'text'))
+
+ precision, recall, f_score, _ = precision_recall_fscore_support(y_true=dataset['label'], y_pred=predictions, average='binary')
+ print(f'precision = {precision:.1%}') # 81.4%
+ print(f'recall = {recall:.1%}') # 78.3%
+ print(f'f_score = {f_score:.1%}') # 79.8%
diff --git a/founta_basile_comparison.ipynb b/founta_basile_comparison.ipynb
new file mode 100644
index 0000000..9e20ef9
--- /dev/null
+++ b/founta_basile_comparison.ipynb
@@ -0,0 +1,615 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "fb8de06f-6ad3-4732-b42c-92bce13e437e",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Xformers is not installed correctly. If you want to use memorry_efficient_attention to accelerate training use the following command to install Xformers\n",
+ "pip install xformers.\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "dd27add27bee4f4a83923912788b1b88",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/2 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "[False, True]"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# loading model\n",
+ "from evaluate_detexd_roberta import predict_delicate\n",
+ "from transformers import pipeline\n",
+ "\n",
+ "classifier = pipeline(\"text-classification\", model=\"grammarly/detexd-roberta-base\", device=0, batch_size=8)\n",
+ "predict_delicate(classifier, ['hello', 'fuck'])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "df776287-5b37-4c1b-ae07-eeda27f45ffe",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Founta dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e83f72ed-7786-4f27-9e80-551b1e5355e5",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "### Data preparation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "e821afef-26e9-4a4b-be24-cc9898f1e713",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# you can find the original data here: https://zenodo.org/record/3706866#.Y35QVOzMIZ9\n",
+ "\n",
+ "import pandas as pd\n",
+ "\n",
+ "df = pd.read_table('founta_data/hatespeech_text_label_vote_RESTRICTED_100K.csv',\n",
+ " names=['text', 'label', 'votes'], skiprows=2)\n",
+ "# skipping broken lines"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "d11bac4c-195c-402a-bd7b-afad8fcb4056",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "label\n",
+ "abusive 27150\n",
+ "hateful 4965\n",
+ "normal 53851\n",
+ "spam 14029\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# the dataset got bigger 80k -> 100k\n",
+ "# there's no information whant changed\n",
+ "# the rows are shuffled and ids removed, so we can not restore original dataset\n",
+ "df.label.value_counts().sort_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "90314b13-b41e-40ac-8491-5814b2a60c08",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# removing spam since there are delicate texts there that are not filtered like porn\n",
+ "df = df[df.label != 'spam']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "401d46ce-fbfa-4755-ae52-5418a884451e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "label\n",
+ "abusive 27150\n",
+ "hateful 4965\n",
+ "normal 53851\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.label.value_counts().sort_index()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "201931ae-5125-4d3c-b98e-2145603f28ac",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a59551635ef44e6f88201a54e4603af9",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/85966 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import datasets\n",
+ "from transformers.pipelines.pt_utils import KeyDataset\n",
+ "\n",
+ "preds = predict_delicate(classifier, KeyDataset(datasets.Dataset.from_pandas(df), 'text'))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "2448e7ea-7b68-4592-aed0-c1c5d9653cdf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df['real'] = df.label != 'normal'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "6e81e541-4f67-4206-8110-062af9114ea7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df['pred'] = preds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "c9721c15-4467-4863-8b4e-4ea6f9050726",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_csv('founta_data/preds.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f72ee91d-8d54-4160-b3f7-6c879e9fa115",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "### Data analysis"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "131c549d-2075-4f2d-9a97-f49a1660dc4b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('founta_data/preds.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "911bebf5-234d-47f2-a17a-9043acee212b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.3735779261568527"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.real.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "ec02caa6-1499-4792-9961-672f61d43059",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.7626132876614572, 0.6655145570605636, 0.7107630401888895, None)"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import precision_recall_fscore_support\n",
+ "founta_results = precision_recall_fscore_support(y_true=df.real, y_pred=df.pred, average='binary')\n",
+ "founta_results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "84ec8005-d29b-4897-be0c-4f9a96bed8a0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FPs\n",
+ "print('\\n------\\n'.join(df[df.pred & ~df.real].sample(10, random_state=23543).text))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f6a82b08-0228-41e8-9e6d-da7051dbef21",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FNs\n",
+ "print('\\n------\\n'.join(df[~df.pred & df.real].sample(10, random_state=23543).text))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c6cf0a37-9282-49da-9a78-068bd49538f5",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "## Basile dataset"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2d910004-46ca-4f7d-a83b-7df3c71a64ad",
+ "metadata": {},
+ "source": [
+ "### Data preparation"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "3c70b4d8-a4c9-429e-8710-d06b82755216",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# you can find the original data here: http://hatespeech.di.unito.it/hateval.html\n",
+ "# or here: https://github.com/alisonrib17/SemEval2019-Task5/tree/master/English\n",
+ "\n",
+ "df = pd.read_table('basile_data/test_en.tsv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "3a68241a-5622-4bc7-bc36-0565f80800e1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.4834224598930481"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.text.str.contains('bitch', case=False).mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "6dd694d0-12d3-477d-85c3-80b790e11652",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "b08c5a154b7b4260850f2349afd2d7da",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/2805 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "df['pred'] = predict_delicate(classifier, KeyDataset(datasets.Dataset.from_pandas(df), 'text'))\n",
+ "df['real'] = df.HS == 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "f6d9a8f1-0aaa-4caa-a364-8ef52db22e62",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_csv('basile_data/preds.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19dac446-fca9-4ee0-9bdb-775345c4ec9e",
+ "metadata": {},
+ "source": [
+ "### Data analysis"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "680216af-44d5-4c13-b3ef-4ee2ef49ac85",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.read_csv('basile_data/preds.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "e69dae9e-e246-45af-a75a-212b158a2d59",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.4206773618538324"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.real.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "e880347d-a337-4f68-8c92-5b709f72d62c",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0.7875222816399287"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.pred.mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "839b5c43-4fd1-475f-97af-2ef5dfc47eee",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.47532820280669985, 0.8898305084745762, 0.6196518146946001, None)"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "basile_results = precision_recall_fscore_support(y_true=df.real, y_pred=df.pred, average='binary')\n",
+ "basile_results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2d710427-903d-4336-b163-bf7d7082ca8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FPs\n",
+ "print('\\n------\\n'.join(df[df.pred & ~df.real].sample(10, random_state=23543).text))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b32cdadb-2db6-442a-bbb0-4032eb79480b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# FNs\n",
+ "print('\\n------\\n'.join(df[~df.pred & df.real].sample(10, random_state=23543).text))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "e91f25b9-a0f4-41d1-8291-4dd2c56657c5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " precision | \n",
+ " recall | \n",
+ " f-score | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Founta | \n",
+ " 76.3% | \n",
+ " 66.6% | \n",
+ " 71.1% | \n",
+ "
\n",
+ " \n",
+ " Basile | \n",
+ " 47.5% | \n",
+ " 89.0% | \n",
+ " 62.0% | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame([founta_results, basile_results],\n",
+ " columns=['precision', 'recall', 'f-score', '_'],\n",
+ " index=['Founta', 'Basile']\n",
+ " ).iloc[:, :3].style.format('{:.1%}'.format)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3143de6c-8a48-4bfc-b5c7-4f4205c5a556",
+ "metadata": {},
+ "source": [
+ "### Restoring precision and recall"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "d8f4f226-b7bb-43f1-b649-b1f978db1fbb",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "precision: 56.1%\n",
+ "recall: 77.3%\n",
+ "f1: 65.0%\n"
+ ]
+ }
+ ],
+ "source": [
+ "def positive_class_metrics(positive_class_percent, macro_f1, accuracy):\n",
+ " def f1_macro_fn(tp):\n",
+ " tn = accuracy - tp\n",
+ " fp = negative_class_percent - tn\n",
+ " fn = positive_class_percent - tp\n",
+ " p1 = tp / (tp + fp + 1e-100)\n",
+ " r1 = tp / (tp + fn + 1e-100)\n",
+ " p0 = tn / (tn + fn + 1e-100)\n",
+ " r0 = tn / (tn + fp + 1e-100)\n",
+ " f1_fn = p0 * r0 / (p0 + r0 + 1e-100) + p1 * r1 / (p1 + r1 + 1e-100)\n",
+ " return f1_fn, p1, r1\n",
+ "\n",
+ " negative_class_percent = 1 - positive_class_percent\n",
+ " n = 1000\n",
+ " diff, tp_opt = min((abs(f1_macro_fn(tp / n)[0] - macro_f1), tp / n) for tp in range(n + 1))\n",
+ " _, p1, r1 = f1_macro_fn(tp_opt)\n",
+ " f1 = 2 / (1 / p1 + 1 / r1)\n",
+ " print(f'precision: {p1:.1%}')\n",
+ " print(f'recall: {r1:.1%}')\n",
+ " print(f'f1: {f1:.1%}')\n",
+ "\n",
+ "\n",
+ "positive_class_metrics(\n",
+ " positive_class_percent=0.4206773618538324,\n",
+ " accuracy=0.65,\n",
+ " macro_f1=0.651)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..311ce9b
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,8 @@
+torch
+transformers
+datasets
+scikit-learn
+tqdm
+pandas
+plotly
+kaleido
\ No newline at end of file