Skip to content

[ICRA 2024] Official code for BEVUDA: Multi-geometric Space Alignments for Domain Adaptive BEV 3D Object Detection

License

Notifications You must be signed in to change notification settings

flyingGH/BEVUDA-Pytorch

Repository files navigation

BEVUDA: Multi-geometric Space Alignments for Domain Adaptive BEV 3D Object Detection

Python 3.8 arXiv

Quick Start

Installation

Step 0. Install pytorch(v1.9.0).

Step 1. Install MMDetection3D(v1.0.0rc4).

Step 2. Install requirements.

pip install -r requirements.txt

Step 3. Install BEVDepth(gpu required).

python setup.py develop

Data preparation

Step 0. Download nuScenes official dataset.

Step 1. Symlink the dataset root to ./data/.

ln -s [nuscenes root] ./data/

The directory will be as follows.

BEVDepth
├── data
│   ├── nuScenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval

Step 2. Prepare infos.

python scripts/gen_info.py

Tutorials

Train.

python [EXP_PATH] --amp_backend native -b 8 --gpus 8

Eval.

python [EXP_PATH] --ckpt_path [CKPT_PATH] -e -b 8 --gpus 8

Citation

Please cite our work if you find it useful.

@article{liu2022multi,
  title={Multi-latent Space Alignments for Unsupervised Domain Adaptation in Multi-view 3D Object Detection},
  author={Liu, Jiaming and Zhang, Rongyu and Chi, Xiaowei and Li, Xiaoqi and Lu, Ming and Guo, Yandong and Zhang, Shanghang},
  journal={arXiv preprint arXiv:2211.17126},
  year={2022}
}

About

[ICRA 2024] Official code for BEVUDA: Multi-geometric Space Alignments for Domain Adaptive BEV 3D Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published