-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetwork.py
203 lines (169 loc) · 8.69 KB
/
network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
from pytorch_pretrained_bert import BertTokenizer, BertModel
import config as cfg
torch.manual_seed(1)
def argmax(vec):
# return the argmax as a python int
_, idx = torch.max(vec, 1)
return idx.item()
def prepare_bert_batch_input(tokenizer, sentences, mode):
# use the first sub-word to represent out-of-vocab word
if mode == 'train' or mode == 'test':
tokenized_text = [tokenizer.tokenize(item)[0] if len(tokenizer.tokenize(item) ) > 0 \
else cfg.UNK_TOKEN for sentence in sentences for item in sentence]
if mode == 'eval':
sentence = [cfg.CLS_TOKEN] + sentence.split() + [cfg.SEP_TOKEN]
tokenized_text = [tokenizer.tokenize(item)[0] for item in sentence]
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
tokens_tensor = tokens_tensor.view(cfg.batch_size, -1)
return tokens_tensor
def prepare_bert_input(tokenizer, sentence, mode):
# use the first sub-word to represent out-of-vocab word
if mode == 'train' or mode == 'test':
tokenized_text = [tokenizer.tokenize(item)[0] if len(tokenizer.tokenize(item) ) > 0 \
else cfg.UNK_TOKEN for item in sentence]
if mode == 'eval':
sentence = [cfg.CLS_TOKEN] + sentence.split() + [cfg.SEP_TOKEN]
tokenized_text = [tokenizer.tokenize(item)[0] for item in sentence]
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
return tokens_tensor
# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
max_score = vec[0, argmax(vec)]
max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
return max_score + \
torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))
class BERT_BiLSTM_CRF(nn.Module):
def __init__(self, tag_to_ix, bert, lstm_hidden):
super(BERT_BiLSTM_CRF, self).__init__()
# Use pretrained BERT
# self.bert = BertModel.from_pretrained('bert-base-uncased')
self.bert = bert
self.hidden_dim = bert.config.hidden_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.lstm_hidden = lstm_hidden
self.lstm = nn.LSTM(input_size=self.hidden_dim, hidden_size=lstm_hidden // 2,
num_layers=1, bidirectional=True, batch_first=False)
# Maps the output of the LSTM into tag space.
self.hidden2tag = nn.Linear(lstm_hidden, self.tagset_size)
# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = nn.Parameter(
torch.randn(self.tagset_size, self.tagset_size))
# These two statements enforce the constraint that we never transfer
# to the start tag and we never transfer from the stop tag
self.transitions.data[tag_to_ix[cfg.START_TAG], :] = -10000
self.transitions.data[:, tag_to_ix[cfg.STOP_TAG]] = -10000
self.hidden = self.init_hidden()
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def init_hidden(self):
return (torch.randn(2, 1, self.lstm_hidden // 2),
torch.randn(2, 1, self.lstm_hidden // 2))
def bert_enc(self, x):
bert_emb, _ = self.bert(x)
bert_enc = bert_emb[-1]
# delete embedding for [CLS] [SEP]
# bert_enc: [1, len, 768]
bert_enc = bert_enc.narrow(1, 1, bert_enc.shape[1]-2)
return bert_enc
def _forward_alg(self, feats):
# Do the forward algorithm to compute the partition function
init_alphas = torch.full((1, self.tagset_size), -10000.).to(self.device)
# START_TAG has all of the score.
init_alphas[0][self.tag_to_ix[cfg.START_TAG]] = 0.
# Wrap in a variable so that we will get automatic backprop
forward_var = init_alphas
# Iterate through the sentence
for feat in feats:
alphas_t = [] # The forward tensors at this timestep
for next_tag in range(self.tagset_size):
# broadcast the emission score: it is the same regardless of
# the previous tag
emit_score = feat[next_tag].view(
1, -1).expand(1, self.tagset_size)
# the ith entry of trans_score is the score of transitioning to
# next_tag from i
trans_score = self.transitions[next_tag].view(1, -1)
# The ith entry of next_tag_var is the value for the
# edge (i -> next_tag) before we do log-sum-exp
next_tag_var = forward_var + trans_score + emit_score
# The forward variable for this tag is log-sum-exp of all the
# scores.
alphas_t.append(log_sum_exp(next_tag_var).view(1))
forward_var = torch.cat(alphas_t).view(1, -1)
terminal_var = forward_var + self.transitions[self.tag_to_ix[cfg.STOP_TAG]]
alpha = log_sum_exp(terminal_var)
return alpha
def _get_lstm_features(self, sentence):
bert_embs = self.bert_enc(sentence)
# bert_embds: [n_batch, seq_len, 768]
enc, _ = self.lstm(bert_embs)
lstm_feats = self.hidden2tag(enc)
return lstm_feats
def _score_sentence(self, feats, tags):
# Gives the score of a provided tag sequence
score = torch.zeros(1).to(self.device)
tags = torch.cat([torch.tensor([self.tag_to_ix[cfg.START_TAG]], dtype=torch.long, device=self.device), tags])
for i, feat in enumerate(feats):
score = score + \
self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix[cfg.STOP_TAG], tags[-1]]
return score
def _viterbi_decode(self, feats):
backpointers = []
# Initialize the viterbi variables in log space
init_vvars = torch.full((1, self.tagset_size), -10000.).to(self.device)
init_vvars[0][self.tag_to_ix[cfg.START_TAG]] = 0
# forward_var at step i holds the viterbi variables for step i-1
forward_var = init_vvars
for feat in feats:
bptrs_t = [] # holds the backpointers for this step
viterbivars_t = [] # holds the viterbi variables for this step
for next_tag in range(self.tagset_size):
# next_tag_var[i] holds the viterbi variable for tag i at the
# previous step, plus the score of transitioning
# from tag i to next_tag.
# We don't include the emission scores here because the max
# does not depend on them (we add them in below)
next_tag_var = forward_var + self.transitions[next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
# Now add in the emission scores, and assign forward_var to the set
# of viterbi variables we just computed
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
backpointers.append(bptrs_t)
# Transition to STOP_TAG
terminal_var = forward_var + self.transitions[self.tag_to_ix[cfg.STOP_TAG]]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
# Follow the back pointers to decode the best path.
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
# Pop off the start tag (we dont want to return that to the caller)
start = best_path.pop()
assert start == self.tag_to_ix[cfg.START_TAG] # Sanity check
best_path.reverse()
return path_score, best_path
def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
feats = feats.view(-1, self.tagset_size)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
return forward_score - gold_score
def forward(self, sentence): # dont confuse this with _forward_alg above.
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
# batch=1 mode
lstm_feats = lstm_feats.view(-1, self.tagset_size)
# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq