-
Notifications
You must be signed in to change notification settings - Fork 730
/
Copy pathft_freqanalysis_mvar.m
248 lines (220 loc) · 7.98 KB
/
ft_freqanalysis_mvar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
function [freq] = ft_freqanalysis_mvar(cfg, data)
% FT_FREQANALYSIS_MVAR performs frequency analysis on
% mvar data, by fourier transformation of the coefficients. The output
% contains cross-spectral density, spectral transfer matrix, and the
% covariance of the innovation noise. The dimord = 'chan_chan(_freq)(_time)
%
% The function is stand-alone, but is typically called through
% FT_FREQANALYSIS, specifying cfg.method = 'mvar'.
%
% Use as
% [freq] = ft_freqanalysis(cfg, data), with cfg.method = 'mvar'
%
% or
%
% [freq] = ft_freqanalysis_mvar(cfg, data)
%
% The input data structure should be a data structure created by
% FT_MVARANALYSIS, i.e. a data-structure of type 'mvar'.
%
% The configuration can contain:
% cfg.foi = vector with the frequencies at which the spectral quantities
% are estimated (in Hz). Default: 0:1:Nyquist
% cfg.feedback = 'none', or any of the methods supported by FT_PROGRESS,
% for providing feedback to the user in the command
% window.
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_MVARANALYSIS, FT_DATATYPE_MVAR, FT_PROGRESS
% Copyright (C) 2009, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
cfg.foi = ft_getopt(cfg, 'foi', 'all');
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
%cfg.channel = ft_getopt(cfg, 'channel', 'all');
%cfg.keeptrials = ft_getopt(cfg, 'keeptrials', 'no');
%cfg.jackknife = ft_getopt(cfg, 'jackknife', 'no');
%cfg.keeptapers = ft_getopt(cfg, 'keeptapers', 'yes');
if strcmp(cfg.foi, 'all')
cfg.foi = (0:1:data.fsampleorig/2);
end
dimtok = tokenize(data.dimord, '_');
isfull = isfield(data, 'label') && sum(strcmp(dimtok, 'chan'))==2;
isuvar = isfield(data, 'label') && sum(strcmp(dimtok, 'chan'))==1;
isbvar = isfield(data, 'labelcmb');
if (isfull||isuvar) && isbvar
ft_error('data representation is ambiguous');
end
if ~isfull && ~isbvar && ~isuvar
ft_error('data representation is unsupported');
end
%keeprpt = strcmp(cfg.keeptrials, 'yes');
%keeptap = strcmp(cfg.keeptapers, 'yes');
%dojack = strcmp(cfg.jackknife, 'yes');
%dozscore = strcmp(cfg.zscore, 'yes');
%if ~keeptap, ft_error('not keeping tapers is not possible yet'); end
%if dojack && keeprpt, ft_error('you cannot simultaneously keep trials and do jackknifing'); end
nfoi = length(cfg.foi);
if isfield(data, 'time')
ntoi = numel(data.time);
else
ntoi = 1;
end
if isfull || isuvar
cfg.channel = ft_channelselection('all', data.label);
%cfg.channel = ft_channelselection(cfg.channel, data.label);
chanindx = match_str(data.label, cfg.channel);
nchan = length(chanindx);
label = data.label(chanindx);
nlag = size(data.coeffs,3); %change in due course
%---allocate memory
h = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
a = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
crsspctrm = complex(zeros(nchan, nchan, nfoi, ntoi), zeros(nchan, nchan, nfoi, ntoi));
elseif isbvar
ncmb = size(data.labelcmb,1)./4;
nlag = size(data.coeffs,2);
%---allocate memory
h = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
a = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
crsspctrm = complex(zeros(ncmb*4, nfoi, ntoi), zeros(ncmb*4, nfoi, ntoi));
end
%FIXME build in repetitions
%---loop over the tois
ft_progress('init', cfg.feedback, 'computing MAR-model based TFR');
for j = 1:ntoi
ft_progress(j/ntoi, 'processing timewindow %d from %d\n', j, ntoi);
if isfull
%---compute transfer function
ar = reshape(data.coeffs(:,:,:,j), [nchan nchan*nlag]);
[h(:,:,:,j), a(:,:,:,j)] = ar2h(ar, cfg.foi, data.fsampleorig);
%---compute cross-spectra
nc = data.noisecov(:,:,j);
for k = 1:nfoi
tmph = h(:,:,k,j);
crsspctrm(:,:,k,j) = tmph*nc*tmph';
end
elseif isuvar
%---compute transfer function
for m = 1:nchan
ar = reshape(data.coeffs(m,:,j), [1 nlag]);
[h(m,m,:,j), a(m,m,:,j)] = ar2h(ar, cfg.foi, data.fsampleorig);
%---compute cross-spectra
nc = data.noisecov(m,j);
for k = 1:nfoi
tmph = h(m,m,k,j);
crsspctrm(m,m,k,j) = tmph*nc*tmph';
end
end
elseif isbvar
for kk = 1:ncmb
%---compute transfer function
ar = reshape(data.coeffs((kk-1)*4+(1:4),:,:,j), [2 2*nlag]);
[tmph,tmpa] = ar2h(ar, cfg.foi, data.fsampleorig);
h((kk-1)*4+(1:4),:,:) = reshape(tmph, [4 nfoi ntoi]);
a((kk-1)*4+(1:4),:,:) = reshape(tmpa, [4 nfoi ntoi]);
%---compute cross-spectra
nc = reshape(data.noisecov((kk-1)*4+(1:4),j), [2 2]);
for k = 1:nfoi
crsspctrm((kk-1)*4+(1:4),k,j) = reshape(tmph(:,:,k)*nc*tmph(:,:,k)', [4 1]);
end
end
end
end
ft_progress('close');
%---create output-structure
freq = [];
freq.freq = cfg.foi;
%freq.cumtapcnt= ones(ntrl, 1)*ntap;
freq.transfer = h;
%freq.itransfer = a;
freq.noisecov = data.noisecov;
freq.crsspctrm = crsspctrm;
if isfield(data, 'dof')
freq.dof = data.dof;
end
if isfull
freq.label = label;
if ntoi>1
freq.time = data.time;
freq.dimord = 'chan_chan_freq_time';
else
freq.dimord = 'chan_chan_freq';
end
elseif isbvar
freq.labelcmb = data.labelcmb;
if ntoi>1
freq.time = data.time;
freq.dimord = 'chancmb_freq_time';
else
freq.dimord = 'chancmb_freq';
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous data
ft_postamble provenance freq
ft_postamble history freq
ft_postamble savevar freq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION to compute transfer-function from ar-parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [h, zar] = ar2h(ar, foi, fsample)
nchan = size(ar,1);
ncmb = nchan*nchan;
nfoi = length(foi);
%---z-transform frequency axis
zfoi = exp(-2.*pi.*1i.*(foi./fsample));
%---reorganize the ar-parameters
ar = reshape(ar, [ncmb size(ar,2)./nchan]);
ar = fliplr([reshape(eye(nchan), [ncmb 1]) -ar]);
zar = complex(zeros(ncmb, nfoi), zeros(ncmb, nfoi));
for k = 1:ncmb
zar(k,:) = polyval(ar(k,:),zfoi);
end
zar = reshape(zar, [nchan nchan nfoi]);
h = zeros(size(zar));
for k = 1:nfoi
h(:,:,k) = inv(zar(:,:,k));
end
h = sqrt(2).*h; %account for the negative frequencies, normalization necessary for
%comparison with non-parametric (fft based) results in FieldTrip
%FIXME probably the normalization for the zero Hz bin is incorrect
zar = zar./sqrt(2);