-
Notifications
You must be signed in to change notification settings - Fork 730
/
Copy pathft_denoise_sss.m
516 lines (433 loc) · 18.1 KB
/
ft_denoise_sss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
function [dataout] = ft_denoise_sss(cfg, datain)
% FT_DENOISE_SSS implements an spherical harmonics based
% projection algorithm to suppress interference outside an sphere
% spanned by an MEG array. It is based on: REFERENCE.
%
% Use as
% dataout = ft_denoise_sss(cfg, datain)
% where cfg is a configuration structure that contains
% cfg.channel = Nx1 cell-array with selection of channels (default = 'all'), see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
% cfg.pertrial = 'no', or 'yes', compute the temporal projection per trial (default = 'no')
% cfg.demean = 'yes', or 'no', demean the data per epoch (default = 'yes')
% cfg.updatesens = 'yes', or 'no', update the sensor array with the spatial projector
% cfg.sss = structure with parameters that determine the behavior of the algorithm
% cfg.sss.order_in = scalar. Order of the spherical harmonics basis that spans the in space (default = 8)
% cfg.sss.order_out = scalar. Order of the spherical harmonics basis that spans the out space (default = 3)
%
% The implementation is based on Tim Tierney's code written for spm
%
% See also FT_DENOISE_PCA, FT_DENOISE_SYNTHETIC, FT_DENOISE_TSR, FT_DENOISE_DSSP, FT_DENOISE_HFC
% Copyright (C) 2024, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar datain
ft_preamble provenance datain
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
% do not continue function execution in case the outputfile is present and the user indicated to keep it
return
end
% check the input data
datain = ft_checkdata(datain, 'datatype', {'raw'}); % FIXME how about timelock and freq?
% ensure the external cellfunction toolbox is on the path
ft_hastoolbox('cellfunction', 1);
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.pertrial = ft_getopt(cfg, 'pertrial', 'yes');
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.updatesens = ft_getopt(cfg, 'updatesens', 'yes');
cfg.sss = ft_getopt(cfg, 'sss'); % sub-structure to hold the parameters
cfg.sss.order_in = ft_getopt(cfg.sss, 'order_in', 8);
cfg.sss.order_out = ft_getopt(cfg.sss, 'order_out', 3);
cfg.sss.thr = ft_getopt(cfg.sss, 'thr', 0.95); % threshold value for removal of correlated components
pertrial = istrue(cfg.pertrial);
if ~pertrial
ft_error('a custom chunksize for the time dependent filtering has not yet been implemented, the temporal filtering is applied per trial');
cfg.sss.chunksize = ft_getopt(cfg.sss, 'chunksize', 10);
else
cfg.sss.chunksize = ft_getopt(cfg.sss, 'chunksize', inf);
end
% select channels and trials of interest, by default this will select all channels and trials
tmpcfg = keepfields(cfg, {'trials', 'channel', 'tolerance', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
datain = ft_selectdata(tmpcfg, datain);
% restore the provenance information
[cfg, datain] = rollback_provenance(cfg, datain);
if istrue(cfg.demean)
ft_info('demeaning the time series');
tmpcfg = keepfields(cfg, {'demean', 'updatesens', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
datain = ft_preprocessing(tmpcfg, datain);
% restore the provenance information
[cfg, datain] = rollback_provenance(cfg, datain);
end
ft_info('Computing the spatial subspace projector\n');
options = keepfields(cfg.sss, {'order_in' 'order_out' 'regularize' 'channel' 'bad' 'thr' 'st_only'});
S = sss_spatial(datain, options);
% compute the temporal subspace projector and the clean the data
ft_info('Computing the subspace projector based on signal correlations\n');
options = keepfields(cfg.sss, {'chunksize', 'thr'});
options.SSS = S;
datain = sss_temporal(datain, options);
% apply the spatial projector to the sensors
if istrue(cfg.updatesens)
montage = [];
montage.tra = S.Pin;
montage.labelold = S.labelold;
montage.labelnew = S.labelnew;
datain.grad = ft_apply_montage(datain.grad, montage, 'keepunused', 'yes', 'balancename', 'amm');
end
% keep some additional information in the subspace struct
subspace.S = S;
% put some diagnostic information in the output cfg.
cfg.sss.subspace = subspace;
% create the output argument
dataout = keepfields(datain, {'label', 'time', 'trial', 'fsample', 'trialinfo', 'sampleinfo', 'grad'});
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous datain
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subfunctions for the computation of the projection matrices
% adjusted from the SPM imlpementation by Jan-Mathijs Schoffelen
function [varargout] = sss_spatial(data, options)
% SSS_SPATIAL computes a collection of spatial projectors based on spherical
% harmonics. The spherical harmonics computation is done by code that has been
% adjusted from Tim Tierney's implementation (adjusted for esthetics). The
% scaling of the spatial harmonics is different than in MNE-Python. The original
% intention was to get as close as possible to MNE-Python's implementation, but
% that has been difficult in practice, specifically because the heuristic that
% is used for regularisation relies on a certain relative scaling, which I have
% not been able to figure out.
%
% Use as
%
% [sss] = sss_spatial(data, options), or
% [sss, datain, dataout] = sss_spatial(data, options)
%
% The input argument data is a FieldTrip-style raw data structure containing a
% correct grad-structure, and the input arguments options specifies the behavior
% of the algorithm.
%
% options.order_in = scalar (default: 8) order of the in-compartment spherical harmonics
% options.order_out = scalar (default: 3) order of the out-compartment spherical harmonics
% options.origin
% options.bad
% options.regularize
if nargin<2
options = [];
end
% ft_hastoolbox('opm', 1);
options.order_in = ft_getopt(options, 'order_in', 8);
options.order_out = ft_getopt(options, 'order_out', 3);
options.bad = ft_getopt(options, 'bad', []);
options.regularize = ft_getopt(options, 'regularize', 'no');
options.origin = ft_getopt(options, 'origin', [0 0 0]);
options.channel = ft_getopt(options, 'channel', 'all');
grad = ft_convert_units(data.grad, 'm');
grad = ft_datatype_sens(grad);
ismag = strcmp(grad.chantype, 'mag')|strcmp(grad.chantype, 'megmag');
extended_remove = []; % placeholder
% for now only support unbalanced grad structures, it's the user's responsibility to unbalance
assert(isfield(grad, 'balance') && strcmp(grad.balance.current, 'none'));
% select the list of channels that is required for the output
label = ft_channelselection(options.channel, grad.label);
selchan = match_str(grad.label, label);
label = grad.label(selchan);
% coil to channel transformation matrix
tra = grad.tra(selchan, :);
% check whether there are any bad channels defined
if ~isempty(options.bad)
options.bad = ft_channelselection(options.bad, label);
badchan = match_str(label, options.bad);
goodchan = setdiff(1:numel(label), badchan(:)');
else
badchan = [];
goodchan = 1:numel(label);
end
% FIXME build in optional origin of sphere + realignment possibility
% regular spherical harmonics basis functions for the outside field
opt = [];
opt.li = options.order_out;
opt.v = grad.coilpos;
opt.o = grad.coilori;
opt.or = options.origin;
opt.reg = 1;
Qout = tra * spm_opm_vslm(opt);
nout = size(Qout,2);
% % in comparison to the MNE-python implementation, the harmonics are
% % differently scaled, apply some ad hoc scaling here; this brings the
% % harmonics into the same range across both implementations, which allows
% % for a better probability that the copied regularisation heuristic works
% r = mean(grad.coilpos - options.origin);
%
% [d, o] = get_degrees_orders(options.order_out);
% scl = pi.*4e-7.*mean(r).^((1:options.order_out)-1);
% scl = scl(d); % this is not fully OK (yet);
% Qout = Qout*diag(scl);
% irregular spherical harmonics basis functions for the inside field
opt.li = options.order_in;
opt.reg = 0;
Qin = tra * spm_opm_vslm(opt);
nin = size(Qin,2);
% [d, o] = get_degrees_orders(options.order_in);
% scl = pi.*4e-7.*mean(r).^-((1:options.order_in)+2);
% scl = scl(d); % this is not fully OK (yet);
% Qin = Qin*diag(scl);
% inverse matrix to map from data to in/out space combined
Q = [Qin Qout];
% if cond(Q) > options.condition_threshold && istrue(options.regularize)
% [Q, sss_indices, nin] = basis_condition_adjustment(Q, nin, options.condition_threshold);
% end
if options.regularize==1
% this is based on a heuristic that I got from the MNE-python
% implementation, and is based on a snr estimate per harmonic basis
% function. Some pruning is done to exclude the basis functions with the
% lowest snr. It requires the basis functions to be scaled differently
% with respect to one another. So far I (JM) have only been able to get
% this scaling by trial and error approximately right.
[d, o] = get_degrees_orders(options.order_in);
r = grad.coilpos - options.origin;
r = sqrt(sum(r.^2,2));
q = 3.63859533511; % only tested on a single test case....
scl = max(r).^-((1:max(d))-q);
scl = scl(d);
thisQ = Q;
thisQ(:,1:nin) = Q(:,1:nin).*scl;
[in_remove, out_remove] = regularize_in(options.order_in, options.order_out, thisQ, ismag, extended_remove);
nin = nin - numel(in_remove);
Q(:, [in_remove out_remove]) = [];
elseif options.regularize==2
kappa = ft_getopt(options, 'kappa', []);
if isempty(kappa)
ft_error('kappa should be specified if options.regulariz==2');
end
% use (implicit) kappa truncated version of the Qin
[U,S,V] = svd(Qin(goodchan,:));
S((kappa+1):end,(kappa+1):end) = 0;
Qin = U*S*V';
Q = [Qin Qout];
end
if options.regularize~=2
kappa = size(Q,2);
else
kappa = kappa+size(Qout,2);
end
[U,S,V] = svd(Q(goodchan,:));
S = diag(1./diag(S(1:kappa,1:kappa)));
iQ = V(:,1:kappa)*S*U(:,1:kappa)';
SSS.P = Q * iQ;
SSS.Q = Q;
SSS.iQ = iQ;
SSS.n = size(Q,2);
SSS.nin = nin;
SSS.nout = SSS.n - SSS.nin;
% this is when the inverses are computed separately
%SSS.iQin = iQin;
%SSS.iQout = iQout;
% this is how it seems to be done in practice, which makes the in and out projectors to interact which each other (upon the inversion step)
SSS.Qin = Q(:, 1:SSS.nin);
SSS.iQin = iQ(1:SSS.nin, :);
SSS.Pin = SSS.Qin * SSS.iQin;
SSS.Qout = Q(:, (SSS.nin+1):end);
SSS.iQout = iQ((SSS.nin+1):end, :);
SSS.Pout = SSS.Qout * SSS.iQout;
SSS.labelold = label(goodchan);
SSS.labelnew = label;
SSS.labelin = cell(size(SSS.Qin,2),1);
for k = 1:numel(SSS.labelin)
SSS.labelin{k} = sprintf('spharm%03din',k);
end
SSS.labelout = cell(size(SSS.Qout,2),1);
for k = 1:numel(SSS.labelout)
SSS.labelout{k} = sprintf('spharm%03dout',k);
end
varargout{1} = SSS;
if nargout>1
% Make montage for the next step
montage = [];
montage.tra = SSS.Pin;
montage.labelold = SSS.labelold;
montage.labelnew = SSS.labelnew;
% FIXME think of the mixing of different channel types
% montage.chantypeold = data.grad.chantype(i2);
% montage.chantypenew = data.grad.chantype(i2);
% montage.chanunitold = data.grad.chanunit(i2);
% montage.chanunitnew = data.grad.chanunit(i2);
varargout{2} = ft_apply_montage(data, montage, 'keepunused', 'no');
montage.tra = SSS.Pout;
varargout{3} = ft_apply_montage(data, montage, 'keepunused', 'no');
end
function [Qnew, sss_indices, ninnew] = basis_condition_adjustment(Q, nin, thr)
n = size(Q, 2);
cQ = cond(Q);
sss_indices_in = 1:nin;
Qout = Q(:, (nin+1):end);
while cQ > thr
for j = 1:length(sss_indices_in)
Q2 = [Q(:,setdiff(sss_indices_in, sss_indices_in(j))) Qout];
c(j) = cond(Q2);
end
[cQ,drop] = min(c);
sss_indices_in = setdiff(sss_indices_in,sss_indices_in(drop));
end
Qnew = [Q(:,sss_indices_in) Qout];
sss_indices = [sss_indices_in (nin+1):n];
ninnew = length(sss_indices_in);
function [dataclean,vv,ss] = sss_temporal(data, options)
% SSS_TEMPORAL implements the temporal projection step of the
% tSSS algorithm, and follows a call to the companion function
% SSS_SPATIAL.
%
% Use as:
% [dataclean] = sss_temporal(data, options)
%
% Where data is a Fieldtrip-style data structure, and options
% is a structure that at least contains a field called SSS,
% which contains the spatial projectors, as computed by sss_spatial.
%
% Other options are
% options.thr = scalar (default 0.98), correlation threshold for
% rejection of a 'temporal' component
% options.bad = cell-array (default []) of channel labels marked as bad
% options.st_only = only apply the spatial projection for cleaning
%
% The temporal projectors are computed per trial, i.e. the length of the
% trials determines the temporal support.
options.thr = ft_getopt(options, 'thr', 0.98);
options.bad = ft_getopt(options, 'bad', []);
options.st_only = ft_getopt(options, 'st_only', false);
options.chunksize = ft_getopt(options, 'chunksize', 10); % in seconds
% check whether there are any bad channels defined for the temporal
% projection. In principle this shouldn't be needed, because the spatial
% projection matrices take care of that. it could be that the numerical
% differences that JM observed while comparing this implementation with the
% MNE-python implementation are caused by not excluding the bad channels at
% this stage.
if ~isempty(options.bad)
options.bad = ft_channelselection(options.bad, data.grad.label);
end
SSS = options.SSS;
% it could be that there are fewer channels in the actual data than in the sensors description
[i1, i2] = match_str(data.label, SSS.labelnew);
%assert(numel(SSS.labelnew)==numel(data.label));
%assert(isequal(sort(i1), (1:numel(SSS.labelnew))'));
%assert(numel(data.trial)==1); % this may change in the future
% project the data into spherical harmonic space, use ft_apply_montage to
% ensure correct matching of the order of the channels
montage = [];
montage.tra = SSS.iQ;
montage.labelold = SSS.labelold;
montage.labelnew = [SSS.labelin;SSS.labelout];
dataQ = ft_apply_montage(data, montage, 'keepunused', 'no');
montage.tra = SSS.Qin;
montage.labelold = SSS.labelin;
montage.labelnew = SSS.labelnew;
datain = ft_apply_montage(dataQ, montage, 'keepunused', 'no');
montage.tra = SSS.Qout;
montage.labelold = SSS.labelout;
montage.labelnew = SSS.labelnew;
dataout = ft_apply_montage(dataQ, montage, 'keepunused', 'no');
cfg = [];
cfg.channel = dataQ.label(contains(dataQ.label, 'in'));
dataQ = ft_selectdata(cfg, dataQ);
datas = data;
datas.label = datas.label(i1);
for k = 1:numel(data.trial)
datas.trial{k} = data.trial{k}(i1,:) - datain.trial{k}(i2,:) - dataout.trial{k}(i2,:);
end
dataclean = data;
clear dataout data
% note the above is memory inefficient
% the below is inteded to mimick MNE-python, which currently estimates the
% temporal projector on the spatially in and out projected data with
% omission of the bad channels
if ~isempty(options.bad)
cfg = [];
cfg.channel = setdiff(datas.label, options.bad);
datas = ft_selectdata(cfg, datas);
datain = ft_selectdata(cfg, datain);
end
%
for k = 1:numel(datain.trial)
% norm normalise
Bin = datain.trial{k}./norm(datain.trial{k}, 'fro');
Bres = datas.trial{k}./norm(datas.trial{k}, 'fro');
%Uin = orth(Bin');
%Ures = orth(Bres');
% MNE-Python obtains the orthonormal basis with an svd
[Uin, Sin, Vin] = svd(Bin','econ');
tol = max(size(Bin)) * Sin(1) * eps;
sel = diag(Sin)>tol;
Uin = Uin(:, sel);
[Ures, Sres, Vres] = svd(Bres','econ');
tol = max(size(Bres)) * Sres(1) * eps;
sel = diag(Sres)>tol;
Ures = Ures(:, sel);
[qin, rin] = qr(Uin,0);
[qres, rres] = qr(Ures,0);
[U, S, V] = svd(qin'*qres); clear U
V = qres*V;
diagS = diag(S);
nint = find(diagS>options.thr,1,'last');
V = V(:,1:nint); % temporal basis functions
% remove the correlated signals from the data
%dataclean = datain;
%dataclean.trial{1} = datain.trial{1} - (datain.trial{1}*U)*U';
% in the SPM implementation the temporal projection is applied to the data
% in spherical harmonic space, the 'in' channels have been selected above
cfg = [];
cfg.trials = k;
if options.st_only
tmp = dataclean.trial{k};
tmp = tmp - (tmp*V)*V';
dataclean.trial{k} = tmp;
else
if k==1
datacleanQ = ft_selectdata(cfg, dataQ);
else
datacleanQ.trial = dataQ.trial(k);
datacleanQ.time = dataQ.time(k);
end
datacleanQ.trial{1} = datacleanQ.trial{1} - (datacleanQ.trial{1}*V)*V';
montage = [];
montage.tra = SSS.Qin;
montage.labelold = SSS.labelin;
montage.labelnew = SSS.labelnew;
tmp = ft_apply_montage(datacleanQ, montage, 'keepunused', 'no');
dataclean.trial{k} = tmp.trial{1};
if k==1
dataclean.label = tmp.label;
end
end
vv{k} = V;
ss{k} = diagS(1:nint);
end