-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDESCRIPTION
20 lines (20 loc) · 1.54 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Package: SelectBoost
Type: Package
Title: A General Algorithm to Enhance the Performance of Variable Selection Methods in Correlated Datasets
Version: 1.0.0
Date: 2019-01-26
Depends: R (>= 2.10)
Imports: lars, glmnet, igraph, parallel, msgps, Rfast, doMC, foreach, methods, Cascade
Authors@R: c(
person(given = "Frederic", family= "Bertrand", role = c("cre", "aut"), email = "frederic.bertrand@math.unistra.fr", comment = c(ORCID = "0000-0002-0837-8281")),
person(given = "Myriam", family= "Maumy-Bertrand", role = c("aut"), email = "myriam.maumy-bertrand@math.unistra.fr", comment = c(ORCID = "0000-0002-4615-1512")),
person(given = "Ismail", family= "Aouadi", role = c("ctr"), email = "i.aouadi@unistra.fr"),
person(given = "Nicolas", family= "Jung", role = c("ctr"), email = "nicolas.jung@unistra.fr"))
Author: Frederic Bertrand [cre, aut] (<https://orcid.org/0000-0002-0837-8281>), Myriam Maumy-Bertrand [aut] (<https://orcid.org/0000-0002-4615-1512>), Ismail Aouadi [ctr], Nicolas Jung [ctr]
Maintainer: Frederic Bertrand <frederic.bertrand@math.unistra.fr>
Description: The selectboost algorithm is general algorithm which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
License: GPL-3
Encoding: UTF-8
URL: http://www-irma.u-strasbg.fr/~fbertran/
Classification/MSC: 62J12, 62J99
RoxygenNote: 6.1.1