.. testsetup:: * import torch from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.callbacks.base import Callback from pytorch_lightning.core.lightning import LightningModule class LitMNIST(LightningModule): def __init__(self): super().__init__() def train_dataloader(): pass def val_dataloader(): pass def test_dataloader(): pass
Research projects tend to test different approaches to the same dataset. This is very easy to do in Lightning with inheritance.
For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images. We are extending our Autoencoder from the LitMNIST-module which already defines all the dataloading. The only things that change in the Autoencoder model are the init, forward, training, validation and test step.
.. testcode:: class Encoder(torch.nn.Module): pass class Decoder(torch.nn.Module): pass class AutoEncoder(LitMNIST): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() self.metric = MSE() def forward(self, x): return self.encoder(x) def training_step(self, batch, batch_idx): x, _ = batch representation = self.encoder(x) x_hat = self.decoder(representation) loss = self.metric(x, x_hat) return loss def validation_step(self, batch, batch_idx): self._shared_eval(batch, batch_idx, 'val') def test_step(self, batch, batch_idx): self._shared_eval(batch, batch_idx, 'test') def _shared_eval(self, batch, batch_idx, prefix): x, _ = batch representation = self.encoder(x) x_hat = self.decoder(representation) loss = self.metric(x, x_hat) self.log(f'{prefix}_loss', loss)
and we can train this using the same trainer
autoencoder = AutoEncoder()
trainer = Trainer()
trainer.fit(autoencoder)
And remember that the forward method should define the practical use of a LightningModule. In this case, we want to use the AutoEncoder to extract image representations
some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)