-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathdemo_test_srresnetplus_real.py
147 lines (110 loc) · 4.46 KB
/
demo_test_srresnetplus_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os.path
import glob
import cv2
import logging
import numpy as np
from datetime import datetime
from collections import OrderedDict
from scipy.io import loadmat
import torch
from utils import utils_deblur
from utils import utils_logger
from utils import utils_image as util
from models.network_srresnet import SRResNet
'''
Spyder (Python 3.6)
PyTorch 0.4.1
Windows 10
Testing code of SRResNet+ [x2,x3,x4] and SRGAN+ [x4] for real image super-resolution.
-- + testsets
+ -- + real_imgs
+ -- + LR
+ -- + frog.png
For more information, please refer to the following paper.
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={},
year={2019}
}
% If you have any question, please feel free to contact with me.
% Kai Zhang (e-mail: cskaizhang@gmail.com; github: https://github.com/cszn)
by Kai Zhang (03/03/2019)
'''
def main():
# --------------------------------
# let's start!
# --------------------------------
utils_logger.logger_info('test_srresnetplus_real', log_path='test_srresnetplus_real.log')
logger = logging.getLogger('test_srresnetplus_real')
# basic setting
# ================================================
sf = 4 # from 2, 3 and 4
noise_level_img = 14./255. # noise level of low-quality image
testsets = 'testsets'
testset_current = 'real_imgs'
use_srganplus = True # 'True' for SRGAN+ (x4) and 'False' for SRResNet+ (x2,x3,x4)
im = 'frog.png' # frog.png
if 'frog' in im:
noise_level_img = 14./255.
noise_level_model = noise_level_img # noise level of model
if use_srganplus and sf == 4:
model_prefix = 'DPSRGAN'
save_suffix = 'srganplus'
else:
model_prefix = 'DPSR'
save_suffix = 'srresnet'
model_path = os.path.join('DPSR_models', model_prefix+'x%01d.pth' % (sf))
show_img = True
n_channels = 3 # only color images, fixed
# ================================================
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# --------------------------------
# (1) load trained model
# --------------------------------
model = SRResNet(in_nc=4, out_nc=3, nc=96, nb=16, upscale=sf, act_mode='R', upsample_mode='pixelshuffle')
model.load_state_dict(torch.load(model_path), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
logger.info('Model path {:s}. Testing...'.format(model_path))
# --------------------------------
# (2) L_folder, E_folder
# --------------------------------
# --1--> L_folder, folder of Low-quality images
L_folder = os.path.join(testsets, testset_current, 'LR') # L: Low quality
# --2--> E_folder, folder of Estimated images
E_folder = os.path.join(testsets, testset_current, 'x{:01d}_'.format(sf)+save_suffix)
util.mkdir(E_folder)
logger.info(L_folder)
# for im in os.listdir(os.path.join(L_folder)):
# if (im.endswith('.jpg') or im.endswith('.bmp') or im.endswith('.png')) and 'kernel' not in im:
# --------------------------------
# (3) load low-resolution image
# --------------------------------
img_name, ext = os.path.splitext(im)
img = util.imread_uint(os.path.join(L_folder, im), n_channels=n_channels)
h, w = img.shape[:2]
util.imshow(img, title='Low-resolution image') if show_img else None
img = util.uint2single(img)
img_L = util.single2tensor4(img)
# --------------------------------
# (4) do super-resolution
# --------------------------------
noise_level_map = torch.ones((1, 1, img_L.size(2), img_L.size(3)), dtype=torch.float).mul_(noise_level_model)
img_L = torch.cat((img_L, noise_level_map), dim=1)
img_L = img_L.to(device)
# with torch.no_grad():
img_E = model(img_L)
img_E = util.tensor2single(img_E)
# --------------------------------
# (5) img_E
# --------------------------------
img_E = util.single2uint(img_E[:h*sf, :w*sf]) # np.uint8((z[:h*sf, :w*sf] * 255.0).round())
logger.info('saving: sf = {}, {}.'.format(sf, img_name+'_x{}'.format(sf)+ext))
util.imsave(img_E, os.path.join(E_folder, img_name+'_x{}'.format(sf)+ext))
util.imshow(img_E, title='Recovered image') if show_img else None
if __name__ == '__main__':
main()